Electric Field Inside Cylindrical Capacitor

AI Thread Summary
The discussion centers on the application of Gauss's law to determine the electric field inside a cylindrical capacitor. It is established that the electric field can be calculated using the relation E * A = (q_enclosed)/(ε_naught) by selecting a cylindrical Gaussian surface. Concerns are raised about the influence of negative charges on the outer cylinder and whether they should be considered in the calculation. However, it is clarified that the electric field lines from the inner positive charges terminate at the outer negative charges, and including the outer charges would result in double-counting. The focus remains on the electric field generated by the charges enclosed within the Gaussian surface, affirming the validity of the approach.
Idontknowhatimdoing
Messages
3
Reaction score
0
Homework Statement
When we want to find the electric field inside of a cylindrical capacitor, we can use Gauss's law and the relation between flux and field to calculate what this field is.
Relevant Equations
Gauss's law
latest?cb=20180317215954.gif

we know that flux is equal to the area integral of electric field dotted with dA and we can set this equal to charge enclosed divided by epsilon naught. Thus, in this case, the integral simplifies to E * A = (q_enclosed)/(ε_naught) when we choose a cylindrical gaussian surface with radius of r.

My question, then, is why are we allowed to use this relation to find electric field inside of the capacitor. I thought that the electric field that is calculated only describes the electric field that the charges enclosed produce. In this situation, wouldn't the negative charges on the outside cylinder affect the Electric Field too? If it does, the electric field that we find wouldn't be the right electric field between the cylinders. Is there a reason that we can ignore the negative charge on the outside cylinder in this capacitor? Or is my thought process incorrect?
 
Physics news on Phys.org
Look at the drawing on the right. Whatever field lines leave the inner surface where the positive charges are located terminate at the inner surface of the outer cylinder where the negative charges are. The electric flux through the dotted Gaussian surface essentially counts all the electric field lines. If you were to somehow account for the charges outside the Gaussian surface, you will be double-counting.
 
@OP. What do you think is the magnitude of the field produced by the outer charge inside the cylindrical shell?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top