Electric potential of nested spherical shells

AI Thread Summary
The discussion revolves around calculating the electric potential of nested spherical shells using Gauss's law. The initial calculations for the potential at different points reveal a misunderstanding regarding the integration limits and the direction of the electric field. Corrections highlight that the negative sign in the integrand was misplaced, affecting the expected sign of the potential difference. Two methods for finding the potential at a specific radius yield different results, with the second method being correct as it considers the influence of the surrounding shells. The conversation concludes with a suggestion to properly account for the electric field contributions from all relevant charges when integrating.
songoku
Messages
2,488
Reaction score
393
Homework Statement
Two concentric spherical shells have equal but opposite charges. One spherical has radius ##a## and charge ##Q## while the other has radius ##b## and charge ##-Q## where ##b > a##. Find ##V(r)-V(\infty)## for the region:
(a) ##r>b##
(b) ##a<r<b##
(c) ##0<r<a##
Relevant Equations
##V=\frac{kQ}{r}##
##V_A - V_B=-\int^{a}_{b} \vec E. d\vec s##
##\int \vec E . d\vec A=\frac{q_{in}}{\epsilon_0}##
For (a), I got ##V(r)=0##

For (b), using Gauss law I get the electric field in the region to be ##\vec E=\frac{kQ}{r^2}\hat r##, then:

$$V(r)-V(b)=-\int^{r}_{b} \left(\frac{kQ}{r^2}\hat r\right) . (-dr ~\hat r)$$
$$V(r)-0=\int^{r}_{b} \frac{kQ}{r^2} dr$$
$$V(r)=kQ\left(\frac{1}{b}-\frac{1}{r}\right)$$

But if I imagine both charges to be point charges, then:
$$V(r)=V_{\text{by +Q}}+V_{\text{by -Q}}$$
$$=kQ\left(\frac{1}{r}-\frac{1}{b}\right)$$

Where is my mistake?

Thanks
 
Physics news on Phys.org
songoku said:
For (b), using Gauss law I get the electric field in the region to be ##\vec E=\frac{kQ}{r^2}\hat r##, then:

$$V(r)-V(b)=-\int^{r}_{b} \left(\frac{kQ}{r^2}\hat r\right) . (-dr ~\hat r)$$
In the integrand, you should not have the negative sign in ##(-dr ~\hat r)##. Instead, ##\vec{dr} = dr ~\hat r##. Note that ##dr## is a negative quantity since you are integrating from a larger value of ##r## to a smaller value of ##r##.

Considering the direction of the electric field between the shells, do you expect ##V(r) - V(b)## to be positive or negative for ##a < r < b##? Does your answer agree with this expectation?
 
TSny said:
In the integrand, you should not have the negative sign in ##(-dr ~\hat r)##. Instead, ##\vec{dr} = dr ~\hat r##. Note that ##dr## is a negative quantity since you are integrating from a larger value of ##r## to a smaller value of ##r##.
Ah I see
TSny said:
Considering the direction of the electric field between the shells, do you expect ##V(r) - V(b)## to be positive or negative for ##a < r < b##? Does your answer agree with this expectation?
The direction of electric field in this case is radially outward so I expect ##V(r)-V(b)## to be positive. My first answer does not fit, my second answer fits.

I have another question. How to find potential at ##r=a##? I did 2 attempts:
(1)
$$V(a)-V(\infty)=-\int^{a}_{\infty} \frac{kQ}{r^2}dr$$
$$V(a)-0=\frac{kQ}{a}$$
$$V(a)=\frac{kQ}{a}$$

(2)
$$V(a)-V(b)=-\int^{a}_{b} \frac{kQ}{r^2}dr$$
$$V(a)-0=kQ\left(\frac{1}{a}-\frac{1}{b}\right)$$
$$V(a)=kQ\left(\frac{1}{a}-\frac{1}{b}\right)$$

By considering both of them as point charges at the center, my answer matches the second one but I don't really understand why (1) is wrong.

Equation from (1) is like a situation where there is just one charge ##Q##. Since point ##a## is also inside another spherical shell so we can't consider the work done to move a charge from infinity to ##a## but need to consider the boundary of the larger shell?

Thanks
 
songoku said:
Ah I see

The direction of electric field in this case is radially outward so I expect ##V(r)-V(b)## to be positive.
Yes.

songoku said:
I have another question. How to find potential at ##r=a##? I did 2 attempts:
(1)
$$V(a)-V(\infty)=-\int^{a}_{\infty} \frac{kQ}{r^2}dr$$
Write $$V(a)-V(\infty)=-\int^{a}_{\infty} \vec E_{net} \cdot \vec{dr} = -\int^{b}_{\infty} \vec E_{net} \cdot \vec{dr} -\int^{a}_{b} \vec E_{net} \cdot \vec{dr}$$ Think about what to substitute for ##\vec E_{net}## in each integral on the far right.
 
Thank you very much TSny
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top