EMF and how it's related to Potential Difference

AI Thread Summary
Kirchoff's Loop Law asserts that the total potential differences in a closed circuit loop equal zero, reflecting energy conservation. The confusion arises regarding why ΔV1 and ΔV2 are considered negative when moving clockwise, as this indicates a drop in potential across components like capacitors. The EMF is understood as the source of potential difference in the circuit, compensating for the voltage drops. As the circuit is traversed, the potential decreases across capacitors and increases when passing the battery. Understanding the signs of ΔV1 and ΔV2 is crucial for correctly applying Kirchoff's principles in circuit analysis.
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
What is capicitance C2?
Relevant Equations
C=Q/V
So Kirchoff's Loop law states that, The sum of all the potential differences encountered while moving around a loop or closed path is zero.
Ok so that is basically a statement of energy conservation. So I see why in the TYPED solution, they related all voltages in the circuit equal to zero. I don't understand why ΔV1 and ΔV2 are negative. Is it because moving clockwise from the bottom left corner means you are traveling up while passing the battery and down across the capacitors?

And that would imply the EMF is equal to the sum of ΔV? Is that because without the Potential Difference of the circuit comes from the EMF?

Screen Shot 2021-10-12 at 12.59.40 PM.png
 
Physics news on Phys.org
quittingthecult said:
I don't understand why ΔV1 and ΔV2 are negative
Going clockwise from the top, the potential drops by the voltage over C1 and then by the voltage over C2. Then it goes up by ##\varepsilon##.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top