Energy Changes in Capacitor After Disconnecting from Battery

AI Thread Summary
The discussion centers on the energy changes in a capacitor after it is disconnected from a battery and the dielectric is removed. Initially, the energy is calculated using the formula U = Q²/(2C), with changes in charge and capacitance after inserting the dielectric. Upon disconnection, while the charge remains constant, the capacitance and voltage change, leading to a new energy relationship where U₂ = (5/2)U₁. Participants confirm calculations and reasoning, ultimately agreeing that the energy ratio U₁/U₂ equals 1/5. The discussion highlights the importance of understanding how charge and capacitance affect energy in capacitors.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
A parallel-plate capacitor with a plate separation of ##d## is connected to a battery, having energy ##U_1##. A dielectric with a constant ##k=2## is inserted between the capacitor's plates, and the plate separation is reduced by 20%. The capacitor is then disconnected from the battery, and the dielectric is removed. The energy stored in the capacitor changes to ##U_2##. What is the ratio ##U_1/U_2##?
Relevant Equations
##q = CV##
My try:

At first, the energy is ##U_1 = \dfrac {q^2_1}{2C_1}##. After inserting the dielectric and reducing the distance between plates, the capacitance changes to ##\dfrac {5}{2}C_1##, and because the voltage is constant, we have ##q_2 = \dfrac {5}{2}q_1##. When we disconnect it from the battery and remove the dielectric, the charge remains unchanged but both capacitance and voltage start changing... So ##q_2 = \dfrac {5}{2}q_1## and ##C_2 = \dfrac {5}{4}C_1##, so ##U_2 = \dfrac {5}{2}U_1##, and therefore ##U_1/U_2 = \dfrac {2}{5} = 0.4##.

But the options are:
  1. 25/4
  2. 25/16
  3. 4/25
  4. 16/25
 
Physics news on Phys.org
MatinSAR said:
... So ##q_2 = \dfrac {5}{2}q_1## and ##C_2 = \dfrac {5}{4}C_1##
Agreed.

MatinSAR said:
so ##U_2 = \dfrac {5}{2}U_1##, and therefore ##U_1/U_2 = \dfrac {2}{5} = 0.4##.
Check - remember ##U = \frac 12 \frac {Q^2}C##.

But, having said that, I don't get any of the answers in the list.
 
Steve4Physics said:
Check - remember ##U = \frac 12 \frac {Q^2}C##.
Yes I forget that ##U_1## has ##2## in denominator.
$$U_2 = \dfrac {(25/4)q^2_1}{(5/2)C_1}= (5/2)(q^2_1/C_1)$$$$U_1 = \dfrac {q^2_1}{2C_1}$$$$U_1/U_2 = 1/5$$
Do you agree with my reasoning?
 
MatinSAR said:
Yes I forget that ##U_1## has ##2## in denominator.
$$U_2 = \dfrac {(25/4)q^2_1}{(5/2)C_1}= (5/2)(q^2_1/C_1)$$$$U_1 = \dfrac {q^2_1}{2C_1}$$$$U_1/U_2 = 1/5$$
Do you agree with my reasoning?
Yes. FWIW I like to use proportionality for this type of problem. Down to personal preferences of course.

##U = \frac {Q^2}{2C}##. Since ##Q## changes by a factor ##\frac 52## and ##C## changes by a factor ##\frac 54##, ##U## changes by a factor ##\frac {{(\frac 52)^2}}{{\frac 54}} = 5##. I.e. ##U_2 = 5U_1##.
 
  • Like
Likes Steve4Physics
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top