Entropy Change & Heat Transferred to a Gas

AI Thread Summary
The discussion revolves around the calculation of heat transferred to a gas and the associated entropy change. The user derived an expression for Q as mc*ln(T2/T1)*a but noted a discrepancy with the expected solution, Q=a*ln(T1/T2). Participants pointed out potential errors in the user's methodology, emphasizing that the dimensions of the derived answer are incorrect and that the problem statement is crucial for accurate analysis. Clarification on the exact wording of the problem is requested to identify specific mistakes. The conversation highlights the importance of dimensional consistency and clear problem definitions in thermodynamic calculations.
warhammer
Messages
164
Reaction score
33
Homework Statement
One mole of a perfect gas undergoes a thermodynamic process so that its temperature changes from T₁ to T₂. Its entropy is related to temperature as S= a/T, where a is constant. Calculate the quantity of heat (deltaQ) transferred to the gas.
Relevant Equations
∫ (delta Q rev)/T=∫dS
By using the given relationship that S=a/T --(1) along with the equation ∫ (delta Q rev)/T=∫dS -- (2) I found out that my answer for the value of Q is mc*ln (T2/T1)*a upon equating (1) & (2).

But the solution is instead given as Q=a*ln*(T1/T2).

I would be grateful if someone would point out any errors in my methodology/understanding and guide towards rectification of the same.
 
Physics news on Phys.org
Show your working if you want us to see where you went wrong. The question doesn't mention m and c, and you should see at once that your answer is dimensionally wrong.
 
Can you please provide the exact word-for-word statement of the problem. There is already a mistake in the statement you have written.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top