- #106
vanesch
Staff Emeritus
Science Advisor
Gold Member
- 5,117
- 20
selfAdjoint said:S&M abandon this nonquantum fellow for a picture containing only interacting quantum systems ("the facts of the world are interactions", they say someplace in the paper). Some of these systems in a particular case function as "observation systems", i.e. they have pointer states. But critically these observer systems can be in superimposed states, entangled states, and so on, and they evolve quantally. This is how we can write the interacting state in terms of not only the evolving state of observed system (the "particle") but also including the observer state ("what the observational system records") in the state functions and density matrix calculations, which is the heart of their demonstration.
Uh, but that, to me, has always been the heart of any MWI view!
That an observation is a change in an observer state due to an interaction between the system and the observer ; now, if - as you rightly point out - these "observer degrees of freedom" - can be in superposed/entangled... states, then what becomes an "observer" now, with a specific 'observational record', is not the original degree of freedom (of which the quantum description, indeed, appears in superposition), but its single manifestation in ONE term. But that means that there are now "copies" of the observer (the different states, in the different terms=branches) around, each with different 'observational recordings' (a different one in each term).
So I fully agree with that. But I'm saying that this idea is the core idea of any MWI view. It is MWI's way to deal with the AND/OR problem: the fact that the observer is NOT the degree of freedom (= the device), but ONE of the different states in which this degree of freedom occurs (= one of the pointer states). An observer IS the pointer state, and not the apparatus, to put it rather bluntly. (and this leads me, in the case of human beings, to distinguish between the conscious observation of the pointer state, versus the entire bodystate)
THIS is, the way I understand it, the fundamental insight of an MWI view.
Now, I thought (maybe erroneously, I didn't read Rovelli's paper in all detail very thoroughly once I thought I recognized the main line), that Rovelli somehow thought he could get away with this "superposition of observer states" and hence solve the AND/OR problem by looking only at the measurement of A onto B and find out that everything is allright.
If Rovelli moreover recognizes this superposition of pointerstates, then I really don't see in what way his idea is different from the general idea of MWI. This is what I tried to say here from the beginning.
I recognize there are some problems to be dealt with in getting rid of the PO; notably if she goes, so does her watch, that external nonquantum clock that supplies the time parameter to QM. But people are working on that.
Yes, this is the famous "problem of time" which I understood was one of the principal difficulties in QG.
Note that in special relativity, as such, this is not necessarily an issue, because unitarity is conserved under a lorentz transformation, so you can "re-tell" the story along different timelike axes, the entire system is normally consistent.