Find focal length of electron for a parabolic motion

AI Thread Summary
The discussion focuses on deriving the focal length of an electron in parabolic motion using the work-energy principle. The user initially calculated a variable \( l \) as \( \frac{mu^2}{2eE} \) and questioned its relation to the focal length. Clarification was sought on whether \( l \) should be interpreted as \( x \) or \( y \), with emphasis on the direction of the force vector \( \vec F \). The equations presented indicate a relationship between the variables, ultimately leading to a derived acceleration \( a \) expressed in terms of \( x \), \( y \), and other constants. The thread concludes with a correction on the interpretation of the variables involved in the calculations.
Istiak
Messages
158
Reaction score
12
Homework Statement
An electron of charge e is moving at a constant velocity u, along x-axis. It enters a region of constant electric field E, which is pointing perpendicular to x-axis. The electron moves in a parabola. Which of the following represents the focal length of the parabola? Neglect any effects due to gravity. (for a parabola of type ##x^2=4ay##, a is the focal length)
Relevant Equations
##\int \vec F\cdot d\vec s = \frac{1}{2}mu^2##
Screenshot (108).png

Here I was going to use ##\int \vec F \cdot d\vec l = \frac{1}{2}mu^2##

What I got that is ##l=\frac{mu^2}{2eE}##. Here the question is what is ##l## (I took ##x## while doing the work but here I used ##l## instead of ##x##)? I was assuming that it's ##x## since I am calculating work in the parabola. So my equation stands ##a=\frac{m^2u^4}{16 y(eE)^2}##. But there's no option of it. But what I found for ##l## that satisfies. But my question is how ##l## is focal length?
 
Physics news on Phys.org
##l## is in the direction of ##\vec F##, so perpendicular to your ##x##. It plays the role of ##y##, not ##x##

##\ ##
 
BvU said:
##l## is in the direction of ##\vec F##, so perpendicular to your ##x##. It plays the role of ##y##, not ##x##

##\ ##
So if I take ##y## into account then I get...

##y=\frac{mu^2}{2eE}##
##\frac{x^2}{4a}=\frac{mu^2}{2eE}##
##a=\frac{x^2 eE}{2a mu^2}##

but... 🤔
 
No you don't:
$$\left . \begin {array} {ll} x &= ut \\y & = \displaystyle {eEt^2\over 2m} \end{array}\right \}\Rightarrow y =x^2 {eE\over 2mu^2}\Rightarrow x^2 = 4\left(mu^2\over 2eE\right ) y$$so that $$a=\displaystyle {mu^2\over 2eE}$$

[edit]sorry I had to fumble with the 2's a few times...

##\ ##
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...

Similar threads

Back
Top