- #36
Onyx
- 138
- 4
##\partial\mathcal{L}/\partial\dot\phi=r^2d\phi##Ibix said:Well, I wouldn't bother with the square root, but that's up to you. Set ##\theta=\pi/2## for simplicity's sake, which makes ##\partial\mathcal{L}/\partial\theta=\partial\mathcal{L}/\partial\dot\theta=0##. What do the three remaining Euler-Lagrange equations give you?
##\partial\mathcal{L}/\partial\dot t=\frac{r_s-r}{r}dt##
##\partial\mathcal{L}/\partial\dot r=\frac{r}{r-r_s}dr##