- #71
Onyx
- 135
- 4
##\mathcal{L}=-\dot t^2+\dot p^2+(5p^2+4t^2)\dot\phi^2##
Equation for ##t##: ##\frac{\partial\mathcal{L}}{\partial t }-\frac{d}{d\tau}\frac{\partial\mathcal{L}}{\partial\dot t}=0##
##\frac{\partial\mathcal{L}}{\partial\dot t}=-2\dot t##
##\frac{\partial\mathcal{L}}{\partial t}=8t\dot\phi^2##
##\frac{d}{d\tau}(-2\dot t)=-2\ddot t##
Therefore ##8t\dot\phi^2=-2\ddot t##
Equation for ##\rho##: ##\frac{\partial\mathcal{L}}{\partial\rho }-\frac{d}{d\tau}\frac{\partial\mathcal{L}}{\partial\dot\rho}=0##
##\frac{\partial\mathcal{L}}{\partial\dot\rho}=2\dot\rho##
##\frac{\partial\mathcal{L}}{\partial\rho}=10\rho\dot\phi^2##
##\frac{d}{d\tau}(2\dot\rho)=2\ddot\rho##
Therefore ##10\rho\dot\phi^2=2\ddot\rho##
Equation for ##\phi##: ##\frac{\partial\mathcal{L}}{\partial\phi }-\frac{d}{d\tau}\frac{\partial\mathcal{L}}{\partial\dot\phi}=0##
##\frac{\partial\mathcal{L}}{\partial\dot\phi}=(10\rho^2+8t^2)\dot\phi##
##\frac{\partial\mathcal{L}}{\partial\phi}=0##
##\frac{d}{d\tau}((10\rho^2+8t^2)\dot\phi)=(20\rho\dot\rho+16t\dot t)\dot\phi+(10\rho^2+8t^2)\ddot\phi##
Therefore ##(20\rho\dot\rho+16t\dot t)\dot\phi+(10\rho^2+8t^2)\ddot\phi=0##
Equation for ##t##: ##\frac{\partial\mathcal{L}}{\partial t }-\frac{d}{d\tau}\frac{\partial\mathcal{L}}{\partial\dot t}=0##
##\frac{\partial\mathcal{L}}{\partial\dot t}=-2\dot t##
##\frac{\partial\mathcal{L}}{\partial t}=8t\dot\phi^2##
##\frac{d}{d\tau}(-2\dot t)=-2\ddot t##
Therefore ##8t\dot\phi^2=-2\ddot t##
Equation for ##\rho##: ##\frac{\partial\mathcal{L}}{\partial\rho }-\frac{d}{d\tau}\frac{\partial\mathcal{L}}{\partial\dot\rho}=0##
##\frac{\partial\mathcal{L}}{\partial\dot\rho}=2\dot\rho##
##\frac{\partial\mathcal{L}}{\partial\rho}=10\rho\dot\phi^2##
##\frac{d}{d\tau}(2\dot\rho)=2\ddot\rho##
Therefore ##10\rho\dot\phi^2=2\ddot\rho##
Equation for ##\phi##: ##\frac{\partial\mathcal{L}}{\partial\phi }-\frac{d}{d\tau}\frac{\partial\mathcal{L}}{\partial\dot\phi}=0##
##\frac{\partial\mathcal{L}}{\partial\dot\phi}=(10\rho^2+8t^2)\dot\phi##
##\frac{\partial\mathcal{L}}{\partial\phi}=0##
##\frac{d}{d\tau}((10\rho^2+8t^2)\dot\phi)=(20\rho\dot\rho+16t\dot t)\dot\phi+(10\rho^2+8t^2)\ddot\phi##
Therefore ##(20\rho\dot\rho+16t\dot t)\dot\phi+(10\rho^2+8t^2)\ddot\phi=0##
Last edited: