- #1
mmfiizik
- 6
- 0
- Homework Statement
- Plane which flies at velocity v, every second takes m mass of air and consumes M mass of fuel. Combustion products are released at velocity u relative to the plane. Find power of the plane P.
- Relevant Equations
- Change in momentum = force x time
I just don't understand should I take u relative to the plane or relative to the ground.
I tried to solve it like this:
$$p_{final}=m_{0}v-m(u-v)-M(u-v)$$
$$p_{initial}=m_{0}v$$
$$\Delta p=-m(u-v)-M(u-v)$$
##m_0## is mass of the plane.
$$F=\Delta p$$
$$F=-m(u-v)-M(u-v)=(m+M)(v-u)$$
$$P=Fv=(m+M)(v-u)v$$
Or should I write in the first equation velocity of combustion products just u?
I tried to solve it like this:
$$p_{final}=m_{0}v-m(u-v)-M(u-v)$$
$$p_{initial}=m_{0}v$$
$$\Delta p=-m(u-v)-M(u-v)$$
##m_0## is mass of the plane.
$$F=\Delta p$$
$$F=-m(u-v)-M(u-v)=(m+M)(v-u)$$
$$P=Fv=(m+M)(v-u)v$$
Or should I write in the first equation velocity of combustion products just u?