Find power needed to fly this airplane using momentum considerations

AI Thread Summary
The discussion centers on calculating the power needed for an airplane to fly using momentum considerations. Key points include the confusion over whether to define the velocity of combustion products relative to the plane or the ground. The equations presented involve changes in momentum and force, emphasizing the importance of defining the velocity correctly for accurate calculations. A suggestion is made to consider the scenario of simply dumping fuel to clarify the role of velocity in the equations. Ultimately, using the plane's rest frame simplifies the analysis by focusing on momentum changes from incoming air and outgoing exhaust.
mmfiizik
Messages
6
Reaction score
0
Homework Statement
Plane which flies at velocity v, every second takes m mass of air and consumes M mass of fuel. Combustion products are released at velocity u relative to the plane. Find power of the plane P.
Relevant Equations
Change in momentum = force x time
I just don't understand should I take u relative to the plane or relative to the ground.
I tried to solve it like this:
$$p_{final}=m_{0}v-m(u-v)-M(u-v)$$
$$p_{initial}=m_{0}v$$
$$\Delta p=-m(u-v)-M(u-v)$$
##m_0## is mass of the plane.
$$F=\Delta p$$
$$F=-m(u-v)-M(u-v)=(m+M)(v-u)$$
$$P=Fv=(m+M)(v-u)v$$
Or should I write in the first equation velocity of combustion products just u?
 
Physics news on Phys.org
mmfiizik said:
should I take u relative to the plane or relative to the ground.
Always worth checking a special case. What if the fuel were simply dumped instead of being burnt? What would u be? Do your equations give the right result?

There is an important difference between the fuel and the air. You have simply added them.
 
Since we are talking about rates here you should probably start with:

$$ F~dt = ( p+dp) - p $$

Where ##p## is the momentum of the system consisting of the planes mass (##M_p##), mass of fuel carried (##M##), and ejected mass air /fuel (##dm,dM_e##). The velocities of the various components are w.r.t. an inertial frame. ##u## is defined as relative to the plane so you must make that adjustment for components of the ejecta.
 
Last edited:
The rest frame of the plane is a good one to use since it allows us to ignore the momentum change from the decreasing mass of the plane over time. Instead, we can concentrate on the momentum flux from the incoming air and from the outgoing exhaust.
 
  • Like
Likes Lnewqban and erobz
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top