Find rate of temperature change using heat capacity, density and area

  • #1
JoeyBob
256
29
Homework Statement
see attached
Relevant Equations
dQ/dt=Ae*5.67E-8*T^4
So first I found rate of heat change using the above equation, with T=883K, e=1, SA= 6*l^2=21.66

Now dQ/dt=746593.71 W

Now I am not sure entirely what to do next. They give density so I likely have to get the mass from that, M=pV,=1.9^3*4037=27689.783 kg.

My issue is that I don't know how to relate change in heat to h=change in temperature.

I could try Q=mc(change in T). But I have change in Q, not Q. Not sure how I would integrate dQ/dT either...

Answer is -0.04121 btw.
 

Attachments

  • question.PNG
    question.PNG
    7.7 KB · Views: 154
Physics news on Phys.org
  • #2
What is the definition of specific heat capacity? Might be relevant...
 
  • Like
Likes hmmm27
  • #3
JoeyBob said:
I could try Q=mc(change in T). But I have change in Q, not Q.
You have Q = mcΔT. Let Δt be the time interval corresponding to the change in temperature ΔT. Think about the equation that you get by dividing both sides of Q = mcΔT by Δt. For small Δt, how does the left side relate to dQ/dt?
 
  • Like
Likes hutchphd
  • #4
TSny said:
You have Q = mcΔT. Let Δt be the time interval corresponding to the change in temperature ΔT. Think about the equation that you get by dividing both sides of Q = mcΔT by Δt. For small Δt, how does the left side relate to dQ/dt?

So I can find dQ/dt using dQ/dt=A*5.67E-8*T^4

I can find m using m=pV

And I know Q=mc(change in T)

But dQ/dt isn't Q. Or can I just put it in the equation anyways and solve for change in T and it will work?
 
  • #5
$$\frac{dQ}{dt}=mc\frac{dT}{dt}$$
 
  • Like
Likes JoeyBob
Back
Top