I Find the distance between the two apexes of two three-sided pyramids

  • I
  • Thread starter Thread starter Herbascious J
  • Start date Start date
AI Thread Summary
To find the distance between the apexes of two three-sided pyramids based on known distances from a triangle base, one can set up three equations with three unknowns representing the apex positions. By solving these equations numerically, the 3D coordinates of the apexes can be determined, making it straightforward to calculate the distance between them. The problem emphasizes that while nine distances are known, the tenth distance must be derived through clever mathematical relations among the known measurements. There is an expectation that the solution may yield one or two possible configurations, particularly if the pyramids are inverted. This approach allows for precise calculation without needing to measure angles directly.
Herbascious J
Messages
165
Reaction score
7
TL;DR Summary
What would be a simple (as possible) equation to determine the distance between two apexes of two three-sided pyramids which have identical bases, but unique apexes. You are only given the distances between points, no angles.
A way to imagine this problem to stand on a plane. You have chosen three points on that plane to create a triangle-base and from these three points you can make distance measurements in any direction. You know the distance between each of the three points of the base, but you do not yet know any angles, and you will not be allowed to calculate these. Above you are two points suspended high in the air. You may imagine that each of these points could be their own apex of a three sided pyramid with the triangle base you have on the ground plane. You would like to know the distance between these two apexes precisely, but you can not measure it directly. You may however, measure the distance to each of the apex points above you from each of the the three points you have on the ground plane. You will never measure angles, only distances between these 5 points, and the only distance you may not measure directly is between the two points hovering high in the air. How do you find this distance?
 
Mathematics news on Phys.org
You can set up three equations with three unknowns for the positions of the apexes (individually) and solve, at least numerically. Once you have the 3D coordinates it's trivial to find the distance.

It's possible that there is some clever relation between the 10 distances (9 of them are known, so any relation will work).

Here is a shorter way to phrase the same problem by the way: There are 5 points in a three-dimensional space. You know 9 of the 10 distances between pairs of points. Find the 10th.
 
  • Like
Likes Herbascious J
mfb said:
You can set up three equations with three unknowns for the positions of the apexes (individually) and solve, at least numerically. Once you have the 3D coordinates it's trivial to find the distance.

It's possible that there is some clever relation between the 10 distances (9 of them are known, so any relation will work).

Here is a shorter way to phrase the same problem by the way: There are 5 points in a three-dimensional space. You know 9 of the 10 distances between pairs of points. Find the 10th.
Thank you for the restatement of the problem, that is much more forward and condensed. I was hoping that, yes, there would be some clever equation, that with enough crunching would fall out and I could simply plug in a set of measurements and always know the tenth distance. It seems that there should only be one or maybe two solutions (given one the pyramids might be inverted).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top