- #1
icemanhv
- 2
- 0
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: calculate retard force
A linear conductor of length L moves at a velocity V over a fixed conductive plate at a distance R0. Current flows through the conductor, the direction of movement of the conductor is perpendicular to the direction of current in it. Find the retard force that acts on the conductor
The equation for magnetic induction of a straight wire is
##B = \mu \cdot \frac{I}{2 \cdot \pi \cdot r}##
Depending on the angle (see picture):
##B\left(\alpha\right) = \mu \cdot \frac{I}{2 \cdot \pi \cdot \frac{{r}_{0}}{\mathrm{\cos}\left(\alpha\right)}} = \mu \cdot \frac{\mathrm{\cos}\left(\alpha\right) \cdot I}{2 \cdot \pi \cdot {r}_{0}}##
To calculate the emf we need the vertical component of the magnetic induction vector:
##{B}_{N}\left(\alpha\right) = \mu \cdot \frac{\mathrm{\cos}\left(\alpha\right) \cdot I}{2 \cdot \pi \cdot {r}_{0}} \cdot \mathrm{\sin}\left(\alpha\right)##
Wire current from ##\varepsilon = B \cdot l \cdot \upsilon \cdot \mathrm{\sin}\left(\alpha\right)##:
##I = \frac{{B}_{N} \cdot l \cdot \upsilon}{R}##
where R is the resistance of a single conductor of the conductive plate, V - speed of the conductor moving over the plate.
Ampere's law for two conductors carrying current:
##F(\alpha) = \mu \cdot \frac{{I}_{1}{I}_{2}}{2 \cdot \pi \cdot r} = \mu \cdot \frac{I \cdot (\frac{\mu \cdot I \cdot \mathrm{\cos}\left(\alpha\right) \cdot \mathrm{\sin}\left(\alpha\right) \cdot l \cdot \upsilon}{2 \cdot \pi \cdot {r}_{0} \cdot R})}{2 \cdot \pi \cdot \frac{{r}_{0}}{\mathrm{\cos}\left(\alpha\right)}} = \mu^2 \cdot I^2 \cdot \mathrm{\sin}\left(\alpha\right) \cdot \mathrm{\cos}\left(\alpha\right) \cdot l \cdot \upsilon \cdot \frac{\mathrm{\cos}\left(\alpha\right)}{R \cdot 4 \cdot \pi^2 \cdot r^2}##
To obtain the total force, integrate from 0 to pi/2 (infinity):
##F = \frac{l \cdot \upsilon}{R} \cdot {\left(\frac{\mu \cdot I}{2 \cdot \pi \cdot {r}_{0}}\right)}^2 \cdot \underset{0}{\overset{\frac{\pi}{2}}{\int }}\mathrm{\sin}\left(\alpha\right)\mathrm{\cos}{\left(\alpha\right)}^2d\alpha##
##F = \frac{l \cdot \upsilon}{R} \cdot {\left(\frac{\mu \cdot I}{2 \cdot \pi \cdot {r}_{0}}\right)}^2 \cdot \left(- \frac{1}{3}\right)##
This calculation gives the total force only on the right side, the magnitude of the force to the left of the center will be equal to the right side, so everything still needs to be multiplied by 2.
How correct are these calculations?
A linear conductor of length L moves at a velocity V over a fixed conductive plate at a distance R0. Current flows through the conductor, the direction of movement of the conductor is perpendicular to the direction of current in it. Find the retard force that acts on the conductor
The equation for magnetic induction of a straight wire is
##B = \mu \cdot \frac{I}{2 \cdot \pi \cdot r}##
Depending on the angle (see picture):
##B\left(\alpha\right) = \mu \cdot \frac{I}{2 \cdot \pi \cdot \frac{{r}_{0}}{\mathrm{\cos}\left(\alpha\right)}} = \mu \cdot \frac{\mathrm{\cos}\left(\alpha\right) \cdot I}{2 \cdot \pi \cdot {r}_{0}}##
To calculate the emf we need the vertical component of the magnetic induction vector:
##{B}_{N}\left(\alpha\right) = \mu \cdot \frac{\mathrm{\cos}\left(\alpha\right) \cdot I}{2 \cdot \pi \cdot {r}_{0}} \cdot \mathrm{\sin}\left(\alpha\right)##
Wire current from ##\varepsilon = B \cdot l \cdot \upsilon \cdot \mathrm{\sin}\left(\alpha\right)##:
##I = \frac{{B}_{N} \cdot l \cdot \upsilon}{R}##
where R is the resistance of a single conductor of the conductive plate, V - speed of the conductor moving over the plate.
Ampere's law for two conductors carrying current:
##F(\alpha) = \mu \cdot \frac{{I}_{1}{I}_{2}}{2 \cdot \pi \cdot r} = \mu \cdot \frac{I \cdot (\frac{\mu \cdot I \cdot \mathrm{\cos}\left(\alpha\right) \cdot \mathrm{\sin}\left(\alpha\right) \cdot l \cdot \upsilon}{2 \cdot \pi \cdot {r}_{0} \cdot R})}{2 \cdot \pi \cdot \frac{{r}_{0}}{\mathrm{\cos}\left(\alpha\right)}} = \mu^2 \cdot I^2 \cdot \mathrm{\sin}\left(\alpha\right) \cdot \mathrm{\cos}\left(\alpha\right) \cdot l \cdot \upsilon \cdot \frac{\mathrm{\cos}\left(\alpha\right)}{R \cdot 4 \cdot \pi^2 \cdot r^2}##
To obtain the total force, integrate from 0 to pi/2 (infinity):
##F = \frac{l \cdot \upsilon}{R} \cdot {\left(\frac{\mu \cdot I}{2 \cdot \pi \cdot {r}_{0}}\right)}^2 \cdot \underset{0}{\overset{\frac{\pi}{2}}{\int }}\mathrm{\sin}\left(\alpha\right)\mathrm{\cos}{\left(\alpha\right)}^2d\alpha##
##F = \frac{l \cdot \upsilon}{R} \cdot {\left(\frac{\mu \cdot I}{2 \cdot \pi \cdot {r}_{0}}\right)}^2 \cdot \left(- \frac{1}{3}\right)##
This calculation gives the total force only on the right side, the magnitude of the force to the left of the center will be equal to the right side, so everything still needs to be multiplied by 2.
How correct are these calculations?