Find the value of ##T## and distance of particle in the first ##4## seconds

AI Thread Summary
The discussion centers on understanding the sign convention in kinematic equations, specifically why the initial upward velocity is treated as negative when the downward direction is considered positive. The calculations show that the total time for the particle's motion is 3 seconds, with 1.5 seconds spent ascending and 1.5 seconds descending. The distance traveled upwards is calculated as approximately 11.025 meters, while the distance traveled downwards is about 30.625 meters, leading to a total distance of approximately 41.7 meters. The choice of direction for velocity does not affect the results as long as the conventions are applied consistently. The key takeaway is that both upward and downward motions can yield the same results with proper sign usage.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached. (question with solution)
Relevant Equations
Mechanics
1711620715468.png


solution is here;

1711620751293.png


I just need to understand this part ##14.7 = -14.7 =9.8T##... why initial velocity upwards is a negative value? or i am interpreting it wrongly.

...........
In my reasoning,

##v=u+at##
##0=14.7 + (-9.8)t##
## t_1=1.5##

in reverse direction, from top to start point ##T##,

##14.7=0+9.8t##
##t_2=1.5##

##T=1.5+1.5=3##seconds

For second part i have the equation,

particle moving up vertically,

##v^2=u^2+2as##

##0 = 14.7^2 + (2× -9.8s)##
##216.09=19.6s##
##s=11.025##m

and for particle moving downwards,

##v=u+at##
##v=0 + 9.8× 2.5##
##v=24.5##

##24.5^2=0+19.6s##

##s=30.625##m

thus ##s_{total} = 11.025+30.625=41.65≅41.7 ##m
 
Last edited:
Physics news on Phys.org
chwala said:
I just need to understand this part 14.7=−14.7=9.8T... why initial velocity upwards is a negative value?
It's ##14.7=-14.7+9.8T##.
Assuming these are values substituted into ##v=v_o+at## we have ##v=+14.7##, ##v_o=-14.7##, and ##a=+9.8##. Evidently the author has chosen the downward direction to be positive, thus the initial upward velocity is negative.
 
  • Like
Likes MatinSAR and chwala
… and physics does not care which direction you consider positive. The author chose down as the positive direction, you chose up. Both conventions give the same result as long as you are consistent.
 
  • Like
Likes MatinSAR, chwala and PhDeezNutz
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top