Finding the increase in entropy of the universe in gas expansion

AI Thread Summary
The discussion focuses on calculating the increase in entropy of the universe during gas expansion. The initial calculations show that the entropy of the system decreases due to heat loss, but the entropy of the surroundings increases as it absorbs heat from the system. The total change in entropy of the universe is derived from the sum of the entropy changes of both the system and its surroundings. The final expression for the entropy change of the universe is given as nR/2(5 - 3ln(2)). Understanding this relationship is crucial for analyzing similar thermodynamic problems.
lorenz0
Messages
151
Reaction score
28
Homework Statement
Two boxes of equal volume ##V_0## are separated by a membrane. The first one to the left, thermally isolated contains ##n## moles of perfect biatomic gas at pressure ##p_i## and temperature ##T_i##. The second box is empty, and in contact with a source of heat at a temperature which is ##T_i/2##. At a certain instant the membrane is removed and the gas reaches a new equilibrium. Find: a) the final pressure of the gas ##P_f## b) the heat ##Q## exchanged with the source of heat c) the variation of entropy of the universe ##\Delta U_{univ}##
Relevant Equations
##PV=nRT, \Delta U=nC_V \Delta T=Q-L, \Delta S=nC_V \ln(\frac{T_f}{T_i})+nR\ln(\frac{V_f}{V_i})##
a) ##P_f=\frac{nRT_f}{V_f}=\frac{nR\frac{T_i}{2}}{2V_0}=\frac{1}{4}\frac{nRT_i}{V_0}=\frac{1}{4}P_i##

b) ##Q=\Delta U=nC_V \Delta T=n\frac{5}{2}R(-\frac{T_i}{2})=-\frac{5}{4}nRT_i=-\frac{5}{4}P_i V_0## (##L=0## since the gas expands in a vacuum;Now, (a) and (b) are both correct but not (c), for which I get:c) ##\Delta S_{system}=nC_V \ln(\frac{T_f}{T_i})+nR\ln(\frac{V_f}{V_i})=n\frac{5}{2}R\ln(\frac{\frac{T_i}{2}}{T_i})+nR\ln(\frac{2V_0}{V_0})=-\frac{3}{2}nR\ln(2)## I understand that the entropy of the system decreases since heat goes out of the system so I guessed that the entropy of the universe should go up by the same amount but apparently this is wrong as in the solution given in the text is ##n\frac{5}{2}R-\frac{3}{2}nR\ln(2)##. What is it that I am missing in finding the entropy of the universe? How should I reason about such a problem in general? Thanks
 

Attachments

  • Joule_expansion.png
    Joule_expansion.png
    13.3 KB · Views: 141
Physics news on Phys.org
The surroundings is being treated as an ideal constant temperature reservoir at temperature ##T_i/2##. The amount of heat it receives at this temperature is ##+\frac{5}{4}nRT_i##. So what is its entropy change?

Otherwise, you did a great job of analyzing this.
 
Chestermiller said:
The surroundings is being treated as an ideal constant temperature reservoir at temperature ##T_i/2##. The amount of heat it receives at this temperature is ##+\frac{5}{4}nRT_i##. So what is its entropy change?
It is ##\frac{Q}{T_i /2}=\frac{\frac{5}{4}nRT_i}{\frac{T_i}{2}}=\frac{2}{T_i}\frac{5}{4}nRT_i=\frac{5}{2}nR## so ##\Delta S_{universe}=\frac{5}{2}nR-\frac{3}{2}nR\ln(2)=\frac{nR}{2}(5-3\ln(2))##. So the entropy change of the universe is the sum of the entropy change of the system + entropy change of its surroundings, right?
 
  • Like
Likes Chestermiller
lorenz0 said:
It is ##\frac{Q}{T_i /2}=\frac{\frac{5}{4}nRT_i}{\frac{T_i}{2}}=\frac{2}{T_i}\frac{5}{4}nRT_i=\frac{5}{2}nR## so ##\Delta S_{universe}=\frac{5}{2}nR-\frac{3}{2}nR\ln(2)=\frac{nR}{2}(5-3\ln(2))##. So the entropy change of the universe is the sum of the entropy change of the system + entropy change of its surroundings, right?
Yes. Very nice.
 
Chestermiller said:
Yes. Very nice.
You have been very helpful: thanks!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top