Finding the tension of a support cable to balance the beam

AI Thread Summary
To find the tension in the support cable balancing the beam, the correct approach involves calculating the torques around the fulcrum. The downward gravitational force on the beam and the upward force from the cable must be balanced. The center of mass (COM) of the system is crucial, calculated as 1.28 m based on the masses and their distances from the fulcrum. The equation for torques must account for the weights and their respective distances from the fulcrum to solve for the tension. Ultimately, the tension in the cable is determined to be 170 N.
JohnTheGreat101
Messages
8
Reaction score
0
Homework Statement
Find the tension in the support cable needed to balance the beam
Relevant Equations
0=tc + tbl - tbr - tcyl
I know the answer is 170 but I am not sure how to get there. I tried doing things backwards
g=9.8
t = fr = mgr
0= 170 + tbl - tbr - 5x9.8x1.5
0= 170 + tbl - tbr - 73.5
-96.5 = tbl - tbr
-96.5 = 18*9.8 * 0.2 - 18*9.8*1.4
-96.5 does not equal -211.68
 

Attachments

  • physics problem find tension.PNG
    physics problem find tension.PNG
    8.6 KB · Views: 143
Physics news on Phys.org
Hint: Where's the center of mass of the beam?
 
Ok so I found the mass of the cable. mgr/gr = m
170/9.8x1.2 = 14.46 kg.
COM = 5 kg x 1.5m + 14.46 kg x 1.2 / 14.46 + 5 = 1.28 m
 
There are three forces acting on the beam that create torques about the fulcrum:
  • The downward force of gravity on the beam. (Where does it act?)
  • The upward force of the cable. (Which is what you are trying to find.)
  • The downward force of the cylinder's weight on the beam.
Add up the torques due to these forces.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top