- #1
damnedcat
- 14
- 0
I am currently reading the special relativity section in Goldstein's Classical, and there is an optional section on 1-Forms and tensors. However i am having a lot of trouble understanding the geometric interpretation of a 1-form.
Here is what I do understand: You take a regular vector (contravariant vector) and you act on it by the metric tensor, apparently this this gives you something called a 1-form (covariant vector) for example in spherical co ordinated acting on a vector (dr, d[tex]\theta[/tex], d[tex]\phi[/tex]) with the metric tensor gives you (dr, r[tex]^{2}[/tex] d[tex]\theta[/tex], r[tex]^{2}[/tex]sin[tex]^{2}[/tex][tex]\theta[/tex]d[tex]\phi[/tex]), ok I can accept this and all the raising and lowering of indecies by the metric tensor. what does baffle me is when Goldstein explains (ch 7.5 p289 3ed):
"If the vector is thought of as a directed line, the 1-form is a set of numbered surfaces through which the vector passes (there is a diagram). It is another functional similar to g (the metric tensor), except it turns a vector into a linear real valued scalar function. That is if n is a 1-form and v a vector then the quantity denoted by <n,v> is a number that tells us how many surfaces of n are pierced by v"
Can anyone help me find the link to this geometric interpretation and the piercing surfaces, or possibly offer an alternate geometric interpretation?
Here is what I do understand: You take a regular vector (contravariant vector) and you act on it by the metric tensor, apparently this this gives you something called a 1-form (covariant vector) for example in spherical co ordinated acting on a vector (dr, d[tex]\theta[/tex], d[tex]\phi[/tex]) with the metric tensor gives you (dr, r[tex]^{2}[/tex] d[tex]\theta[/tex], r[tex]^{2}[/tex]sin[tex]^{2}[/tex][tex]\theta[/tex]d[tex]\phi[/tex]), ok I can accept this and all the raising and lowering of indecies by the metric tensor. what does baffle me is when Goldstein explains (ch 7.5 p289 3ed):
"If the vector is thought of as a directed line, the 1-form is a set of numbered surfaces through which the vector passes (there is a diagram). It is another functional similar to g (the metric tensor), except it turns a vector into a linear real valued scalar function. That is if n is a 1-form and v a vector then the quantity denoted by <n,v> is a number that tells us how many surfaces of n are pierced by v"
Can anyone help me find the link to this geometric interpretation and the piercing surfaces, or possibly offer an alternate geometric interpretation?
Last edited: