How Can I Measure Kinetic Energy in a Non-Inertial Reference Frame?

  • Thread starter Thread starter xkcda
  • Start date Start date
AI Thread Summary
To measure kinetic energy in a non-inertial reference frame, the formula K = (Moment of Inertia about an axis through A * Angular Velocity^2)/2 + (Mass * Velocity^2)/2 is proposed, yielding K = 9.5. However, there is ambiguity regarding the reference frame's rotation and the interpretation of "with respect to point A." It is suggested that if the moment of inertia is calculated about the axis of rotation, the linear kinetic energy term may lead to double counting. Observers in the non-inertial frame must consider the rigid body's instantaneous motion as a combination of linear motion and rotation about its mass center. Clarifying these aspects is essential for accurate kinetic energy measurement.
xkcda
Messages
7
Reaction score
0
TL;DR Summary: I think A is an non inertial reference frame.So how can I measure kinetic energy about it?

I found a solution to the problem which states that Kinetic Energy about A= (Moment of Inertia about an axis passing through A*Angular Velocity^2)/2+(Mass*Velocity^2)/2 .Thus K=9.5.Can anyone please show me the derivation of this formula?
Screenshot from 2023-06-16 00-03-00.png
 
Last edited:
Physics news on Phys.org
No attempt shown.
 
Please show some effort, so we can help you learn.
 
Moved to homework help.
 
The first difficulty is that "with respect to point A" is ambiguous.
It is reasonable to assume, as you have, that it does not mean the fixed point in space where that corner happens to be at some instant; rather, it moves with that corner of the plate. But that still does not answer whether the reference frame is also rotating with the plate. Consider both cases.
In each case, think of what an observer in the frame would see the plate as doing.
xkcda said:
Kinetic Energy about A= (Moment of Inertia about an axis passing through A*Angular Velocity^2)/2+(Mass*Velocity^2)/2
That seems very unlikely to be right. If you take the moment of inertia about the axis of rotation then you should not need to be adding a linear KE term: that would be double counting. Generally speaking, you can consider the instantaneous motion of a rigid body as the sum of the linear motion of its mass centre and its rotation about its mass centre. So if you have an ##mv^2## term for the linear component then the moment of inertia should be about the mass centre.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top