How Can I Verify My Pulley System Calculations for Weight and Movement?

  • Thread starter Thread starter Mopar_Mudder
  • Start date Start date
  • Tags Tags
    Calculations
AI Thread Summary
The discussion centers on verifying pulley system calculations involving a weight and the resulting pull on a scale. The original poster estimates a pull of approximately 51.5 pounds, with tension being equal in both directions, suggesting no lateral movement of the scale. A participant confirms the calculations for a frictionless system, noting slight imbalances due to friction but agreeing with the overall result. The conversation emphasizes the importance of showing calculations for clarity and faster responses in future inquiries. The original poster expresses gratitude for the feedback and intends to provide more detailed calculations next time.
Mopar_Mudder
Messages
5
Reaction score
0
Would really be a big help if someone could look at my drawing and verify what I have come up with.

Basically pulleys with cable wrapped around then and a weight hanging off the bottom. What I am interested in is what the wight pull at the pull scale would be and if their is any left or right movement of the scale.

I come up with aprox 51.5# of pull at the scale and pull is equal in both directions so it shouldn't be pulled left or right.

Thanks for looking.
 

Attachments

  • Pulley Caculations.jpg
    Pulley Caculations.jpg
    21.4 KB · Views: 481
Engineering news on Phys.org
Mopar_Mudder: Your answer in post 1 looks correct, for a frictionless system. The tensile force applied to each side of the scale would be approximately 229.3 N. The force on the scale actually would be slightly imbalanced (228.9 N to the left, and 229.6 N to the right), but the friction in the system is probably sufficient to prevent the scale from moving to the right. In fact, the scale reading might be significantly less than 228.9 N, due to losses to friction in the pulley axles.
 
Last edited:
The scale can't be "unbalanced". Ignoring friction, if the rope tensions on the two sides of the scale were different, the scale would move sideways.

If the tension shown the scale is T, the tensions in the two vertical ropes are
(3/7.72)T and (1.55/4)T and the sum of those tensions = 40lb. The OP's answer is correct.
 
Welcome to Physics Forums, Mopar_Mudder :smile:
Mopar_Mudder said:
Any good forums for "hobby" engineers to get help?

Thanks
You're fine here. Just for future reference, it never hurts to show your calculations, and it might help get a faster response.

I also agree with the 51.5 lb result. It helps make the calculations easier that the two pulley ratios (3/7.72) and (1.55/4) are equal, so the two bottom ropes must have identical 20 lb tensions.
 
Thanks for all the replys and help. Been a few years since I was that deep into calculations so I just wanted to make sure what I was doing was correct. Not worried about the friction in the system. For this project close is close enough.

I'll make sure I post up calcs next time.
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
TL;DR Summary: Heard in the news about using sonar to locate the sub Hello : After the sinking of the ship near the Greek shores , carrying of alot of people , there was another accident that include 5 tourists and a submarine visiting the titanic , which went missing Some technical notes captured my attention, that there us few sonar devices are hearing sounds repeated every 30 seconds , but they are not able to locate the source Is it possible that the sound waves are reflecting from...
Back
Top