How Do You Calculate Normal Force and Tension Direction at Point O?

AI Thread Summary
To calculate the normal force and tension direction at point O, the normal force is determined to be 7.2N at an angle of 57° from the vertical. The confusion arises from the interpretation of the term "reaction force," which in this context refers to the force at a hinge that allows rotation. The reaction force at point O has both vertical and horizontal components, meaning it cannot be strictly perpendicular to the vertical support. To solve the problem effectively, it's suggested to take moments around convenient points and include all forces acting on the system, such as tension and weights. Understanding the dynamics of the hinge and the forces involved is crucial for accurate calculations.
laimonel
Messages
4
Reaction score
0
cfgs1.jpg

2. Homework Equations : N=mg; M=Fl
3. The Attempt at a Solution : i find that the normal force of the rope AD is 8.5N.

Hello.
Sorry that in my first post I'm already asking for help, but I'm getting really desperate with this problem. I need to find the Normal force at the point O and direction of it. I tried multiplying the N of the rope times cos of 45° but it's not right.
The answer should be: 7.2N, 57° vertical.
Thanks in advance.
P.S. I apologise for my bad english.
 
Physics news on Phys.org
Maybe I'm missing something here but a normal force is perpendicular to the surface and the only two surfaces involved at O are at 0 and \frac{\pi}{2} so where 57^o comes from I have no idea.
 
JHamm said:
Maybe I'm missing something here but a normal force is perpendicular to the surface and the only two surfaces involved at O are at 0 and \frac{\pi}{2} so where 57^o comes from I have no idea.
That is exactly what i was thinking, but the book says otherwise..
Well actually it says "find reaction force having in mind that point O car rotate when it's not balanced". And i assume that by "reaction force" it means normal force.
 
laimonel said:
Well actually it says "find reaction force having in mind that point O car rotate when it's not balanced". And i assume that by "reaction force" it means normal force.

If the rod can rotate around O then it is connected to a hinge, and the reaction force comes from the pin through the hinge, fixed to the wall. The reaction force of the pin can be of any direction. I drew the hinge into your picture.

ehild
 

Attachments

  • hinge.JPG
    hinge.JPG
    12.1 KB · Views: 1,453
laimonel said:
Well actually it says "find reaction force having in mind that point O car rotate when it's not balanced". And i assume that by "reaction force" it means normal[/color] force.
I think you are translating the textbook wrongly. On force diagrams, the word "normal" means perpendicular to a line or surface. The force at 0 will have both a vertical and horizontal component, so the sum of these components means the reaction at O can not be exactly perpendicular to the vertical support.

To solve the problem, you will need to take moments about a couple of convenient points. One of these is point D. So as part of your working, you'll need the vertical height DO.
 
You should draw the forces on the diagram.
As well as the reaction force at O which you are trying to find there is a Tension in the string, The weight due to the 0.6kg object at B and the weight of the beam itself (presumably this is uniform)
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top