How to Calculate Christoffel Symbols in Spherical Coordinates?

In summary, we discussed the metric of Euclidean \mathbb{R}^3 in spherical coordinates and how to calculate the Christoffel components \Gamma^{\sigma}{}_{\mu \nu} in this coordinate system using the formula \Gamma^{\sigma}{}_{\mu \nu}=\frac{1}{2} \sum_{\rho} g^{\sigma \rho} \left( \frac{\partial g_{\nu \rho}}{\partial x^{\mu}} + \frac{\partial g_{\mu \rho}}{\partial x^{\nu}} - \frac{\partial g_{\mu \nu}}{\partial x^{\sigma}}
  • #36
Sorry, the form of the line equation you want to use is the form you posted in #24...You then have [itex]x(t)=a_x+b_xt[/itex], [itex]y(t)=a_y+b_yt[/itex], and [itex]z(t)=a_z+b_zt[/itex] in Cartesians...what are these equations in Spherical coords?
 
Physics news on Phys.org
  • #37
ok. i would get

[tex]r(t) \sin{\theta(t)} \cos{\phi(t)}=a_x + b_x t[/tex]
[tex]r(t) \sin{\theta(t)} \sin{\phi(t)}=a_y + b_y t[/tex]
[tex]r(t) \cos{\theta(t)}=a_z + b_z t[/tex]

surely i need to rearrange these to get
r=something
theta=something and
phi=something?
 
Last edited by a moderator:
  • #38
In the first post, you said that the metric is a 2-form. It is not. A 2-form is a covariant anti-symmetric tensor of rank 2, while a metric is always a symmetric tensor.
 
  • #39
latentcorpse said:
surely i need to rearrange these to get
r=something
theta=something and
phi=something?

That shouldn't be too hard to do...the inverse relations between [itex]\{r,\theta,\phi\}[/itex] and [itex]\{x,y,z\}[/itex] are fairly well known:wink:
 
  • #40
ok. so i take
[tex]r(t)=\sqrt{x(t)^2+y(t)^2+z(t)^2}[/tex]
[tex]\theta(t)=\tan^{-1}{\frac{y}{x}}[/tex]
[tex]\phi(t)=\cos^{-1}{\frac{z}{r}}[/tex]

and plug these into the 3 geodesic ODE's, yes?

also could somebody please remind me of the difference between a two form and a rank 2 covariant tensor?
thanks.
 
Last edited by a moderator:
  • #41
latentcorpse said:
also could somebody please remind me of the difference between a two form and a rank 2 covariant tensor?
thanks.

A 2-form is a rank 2 covariant tensor that is also antisymmetric.
 
  • #42
so

[tex]r(t)=\sqrt{a_x^2+a_y^2+a_z^2+(b_x^2+b_y^2+b_z^2)t^2}[/tex]

[tex]\theta(t)=\tan^{-1}{\frac{a_y+b_yt}{a_x+b_xt}}[/tex]

[tex]\phi(t)=\cos^{-1}{\frac{a_z+b_zt}{r}}[/tex]

are these what i should sub into the geodesic eqns?
 
Last edited by a moderator:
  • #43
Sounds like a plan to me...
 
  • #44
y:=sqrt((a+b*t)^2+(c+d*t)^2+(e+f*t)^2);
r:=diff(y,t,t);
s:=arctan((c+d*t)/(a+b*t));
q:=simplify(y*diff(s,t,t));
l:=arccos((e+f*t)/y);
p:=simplify(y*sin^2(s)*diff(l,t,t));
simplify(r-q+p);

i tried the above MAPLE code because this calculation was getting tediously long by hand but i can't seem to get 0 out as an answer...any ideas where I'm going wrong?
 
  • #45
[tex]\arctan(y/x)\neq\tan^{-1}(y/x)[/tex]
 
  • #46
huh? why not?
i can't use tan^(-1) as legitmate maple code - it interprets that as 1/tan(...)
 
  • #47
[itex]\arctan[/itex] is single valued, while the inverse tangent is multivalued (same thing for [itex]\cos^{-1}[/itex])...Does Maple have an "inverse" command?
 
  • #48
apparently arctan is the inverse of tan according to maple? do you use a different program to maple?
i was all for doing it by hand before i got halfway thorugh the first derivative and realized the whole calculation was going to take about 10 pages, somewhere in which i was bound to make a tedious mistake whilst differentiating. as one of my levturers recently said, most physicists just use maple (or i guess some similar program) for these types of calculations.
 
  • #49
It shouldn't be too hard to do by hand...For starters, [itex]\dot{x}=b_x[/itex], [itex]\dot{y}=b_y[/itex]
and [itex]\dot{z}=b_z[/itex]; so


[tex]\dot{r}=\frac{x\dot{x}+y\dot{y}+z\dot{z}}{\sqrt{x^2+y^2+z^2}}=\frac{b_xx+b_yy+b_zz}{r}[/tex]

[tex]\implies \ddot{r}=\frac{b_x^2+b_y^2+b_z^2}{r}-\frac{b_xx+b_yy+b_zz}{r^2}\dot{r}=\frac{b^2}{r}-\frac{(b_xx+b_yy+b_zz)^2}{r^3}[/tex]
 
  • #50
[tex]\theta=\tan^{-1}{\frac{y}{x}}[/tex]

[tex]\dot{\theta} = \frac{1}{1+(\frac{y}{x})^2} \left( \dot{y} x^{-1} - y x^{-2} \dot{x} \right)[/tex]

[tex] \ddot{\theta} = \frac{\left( \ddot{y} x^{-1} - \dot{y} x^{-2} \dot{x} \right)}{\left(1 + \left(\frac{y}{x} \right)^2 \right)} - \frac{2y}{x} \frac{ \left( \dot{y} x^{-1} - y x^{-2} \dot{x} \right)^2}{ \left( 1 + \left( \frac{y}{x} \right)^2 \right)^2}[/tex]

is that ok?
 
Last edited by a moderator:
  • #51
Shouldn't you have [itex]\phi=\tan^{-1}(y/x)[/itex]?
 
  • #52
ok so

[tex]\ddot{\phi}=\frac{\ddot{y} x^{-1} -2 \dot{y} x^{-2} \dot{x} - y x^{-2} \dot{x} +2y x^{-3} \dot{x}^2}{1+ \left( \frac{y}{x} \right)^2} - \frac{2y}{x} \frac{ \left( \dot{y} x^{-1} - y x^{-2} \dot{x} \right)^2}{\left( 1+ \left( \frac{y}{x} \right)^2 \right)^2}[/tex]
 
Last edited by a moderator:
  • #53
That doesn't look quite right to me...I'd start by simplifying [itex]\dot{\phi}[/itex] as much as possible, and then converting it to spherical coordinates...what do you get when you do that?
 
Last edited by a moderator:
  • #54
[tex]\dot{\phi}=\frac{1}{1+ \left( \frac{y}{x} \right)^2 } \left( \dot{y} x^{-1} - y x^{-2} \dot{x}} \right)=\frac{1}{1+ \left( \frac{a_y+b_yt}{a_x+b_xt} \right)^2} \left( \frac{b_y}{a_x+b_xt}-\frac{b_x(a_y+b_yt)}{(a_x+b_xt)^2} \right)[/tex]
that ok?
 
Last edited by a moderator:
  • #55
latentcorpse said:
[tex]\dot{\phi}=\frac{1}{1+ \left( \frac{y}{x} \right)^2 } \left( \dot{y} x^{-1} - y x^{-2} \dot{x}} \right)[/tex]
I'd multiply both the numerator and denominator by [itex]x^2[/itex], sub in [itex]\dot{x}=b_x[/itex] and [itex]\dot{y}=b_y[/itex] and then write [itex]x[/itex] and [itex]y[/itex] in terms of [itex]r[/itex], [itex]\theta[/itex] and [itex]\phi[/itex]...
 
Last edited by a moderator:
  • #56
[tex]\dot{\phi} = \frac{r \sin{\theta}}{1+r^2 \sin^2{\theta} \sin^2{\phi}} \left( b_y \cos{\phi} - b_x \sin{\phi} \right)[/tex]

is that going to help? shouldn't i take the second derivative before i switch to spherical coordinates?
 
Last edited by a moderator:
  • #57
latentcorpse said:
[tex]\dot{\phi} = \frac{r \sin{\theta}}{1+r^2 \sin^2{\theta} \sin^2{\phi}} \left( b_y \cos{\phi} - b_x \sin{\phi} \right)[/tex]

is that going to help? shouldn't i take the second derivative before i switch to spherical coordinates?

It would help, if you did it properly:wink:

Try again, you have an error...and don't be afraid to simplify your result as much as possible.
 
Last edited by a moderator:
  • #58
[tex]\dot{\phi}=\frac{1}{1+ \left( \frac{y}{x} \right)^2} \left( \dot{y} x^{-1} - y x^{-2} \dot{x} \right) = \frac{1}{1+y^2} \left( \dot{y} x - y \dot{x} \right)[/tex]

[tex]\ddot{\phi} = \frac{ \left( \ddot{y} x + \dot{y} \dot{x} - \dot{y} \dot{x} - y \ddot{x} \right) \left( 1+ y^2 \right) - 2 y \dot{y} \left( \dot{y} x - y \dot{x} \right) }{ \left(1+y^2 \right)^2 }[/tex] note the first term in the numerator will dissappear because [tex]\ddot{y}=\ddot{x}=0[/tex] and [tex]\dot{y}\dot{x}-\dot{x}\dot{y}=0[/tex].

[tex]\ddot{\phi} = - \frac{2r \sin{\theta} \sin{\phi} b_y \left( b_y r \sin{\theta} \cos{\phi} - b_x r \sin{\theta} \sin{\phi} \right) }{ \left(1+r^2 \sin^2{\theta} \sin^2{\phi} \right)^2}[/tex]
[tex]\ddot{\phi}=-\frac{2 b_y r^2 \sin^2{\theta} \sin{\phi} \left( b_y \cos{\phi} - b_x \sin{\phi} \right)}{ \left(1+r^2 \sin^2{\theta} \sin^2{\phi} \right)^2}[/tex]

i can't see how to simplify that further...
 
Last edited by a moderator:
  • #59
When you multiply [itex]1+\left(\frac{y}{x}\right)^2[/itex] by [itex]x^2[/itex], should you get [itex]x^2+y^2[/itex]?
 
  • #60
[tex]\dot{\phi}=\frac{\dot{y}x-y \dot{x}}{x^2+y^2}[/tex]

[tex]\ddot{\phi}=\frac{ \left( \ddot{y} x + \dot{y} \dot{x} - \dot{y} \dot{x} - y \ddot{x} \right) \left( x^2+y^2 \right) - \left( 2 x \dot{x} + 2 y \dot{y} \right) \left( \dot{y} x - y \dot{x} \right)}{ \left( x^2+y^2 \right)^2}[/tex]

[tex]\ddot{\phi} = \frac{-2 \left( b_x r \sin{\theta} \cos{\phi} + b_y r \sin{\theta} \sin{\phi} \right) \left( b_y r \sin{\theta} \cos{\phi} - b_x r \sin{\theta} \sin{\phi} \right) }{ \left( r^2 \sin^2{\theta} \cos^2{\phi} + r^2 \sin^2{\theta} \sin^2{\phi} \right)^2}[/tex]

[tex]\ddot{\phi}=\frac{-2r^2 \sin^2{\theta} \left(b_x \cos{\phi} + b_y \sin{\phi} \right) \left( b_y \cos{\phi} - b_x \sin{\phi} \right)}{r^4 \sin^4{\theta}}[/tex]

[tex]\ddot{\phi} = \frac{-2 \left( b_x b_y \cos^2{\phi} + b_y^2 \sin{\phi} \cos{\phi} - b_x^2 \sin{\phi} \cos{\phi} - b_x b_y sin^2{\phi} \right)}{r^2 \sin^2{\theta}}[/tex]

hopefully that looks better? i was hoping the numerator would simplify nicer though.
 
Last edited by a moderator:
  • #61
Your [itex]\LaTeX[/itex] contains a few typos, but yes, that's correct.

Also, it is worth writing [itex]\dot{\phi}[/itex] and [itex]\dot{r}[/itex] in spherical coordinates;

[tex]\dot{r}=b_x\sin\theta\cos\phi+ b_y\sin\theta\sin\phi+b_z\cos\theta[/tex]

[tex]\dot{\phi}=\frac{b_y\cos\phi-b_x\sin\phi}{r\sin\theta}[/tex]

These will come in handy when calculating [itex]\ddot{\theta}[/itex] (Since [itex]\dot{\theta}[/itex] will be a function of [itex]r[/itex], [itex]\theta[/itex] and [itex]\phi[/itex]; knowing these derivatives allows you to find [itex]\ddot{\theta}[/itex] quickly, using the chain rule)
 
Last edited by a moderator:
  • #62
I recall that a straight line in cartesian coordinates is [tex]\ \frac{d^2 x^i}{d \lambda^2} = 0 \ ,[/tex]
where the curve is parametric in lambda. The parameter can be time.

[tex]\frac{d^2 x^i}{d t^2} = 0[/tex]
 
  • #63
Phrak said:
I recall that a straight line in cartesian coordinates is [tex]\ \frac{d^2 x^i}{d \lambda^2} = 0 \ ,[/tex]
where the curve is parametric in lambda. The parameter can be time.

[tex]\frac{d^2 x^i}{d t^2} = 0[/tex]

This is true; which is why the solution is of the form [itex]x^i=a_i+b_it[/itex] in Cartesians.
 
  • #64
ok. so finally [itex]\ddot{\theta}[/itex]

[tex]\theta=\cos^{-1} \left( \frac{z}{r} \right)[/tex]

[tex]\dot{\theta} = - \frac{1}{\sqrt{1 - \left( \frac{z}{r} \right)^2 }} \left( \dot{z} r^{-1} - z r^{-2} \dot{r} \right)[/tex]

[tex]\dot{\theta}=-\frac{1}{\sqrt{r^4-z^2r^2}} \left(\dot{z}r-z \dot{r} \right)[/tex]

is that ok for [itex]\dot{\theta}[/itex]?
 
Last edited by a moderator:
  • #65
Looks fine so far; now express it in terms of spherical coordinates and [itex]b_x[/itex], [itex]b_y[/itex] and [itex]b_z[/itex]...
 
  • #66
[tex]\dot{\theta}=-\frac{1}{r^2 \sqrt{1-\cos^2{\theta}}} \left( \dot{z}r - z \dot{r} \right) = -\frac{1}{r^2 \sin{\theta}} \left( b_z r - \left( a_z + b_z t \right) \left(b_x \sin{\theta} \cos{\phi} + b_y \sin{\theta} \sin{\phi} + b_z \cos{\theta} \right)[/tex]

looking ok?
 
Last edited by a moderator:
  • #67
I'd use [itex]z=r\cos\theta[/itex] instead of [itex]z=a_z+b_zt[/itex]...
 
  • #68
[tex]\dot{\theta}=-\frac{1}{r \sin{\theta}} \left(b_z - \cos{\theta} \right) \left( b_x \sin{\theta} \cos{\phi} + b_y \sin{\theta} \sin{\phi} + b_z \cos{\theta} \right)[/tex]
that's ok?

should i take the derivative of the above or should i take the derivative of something shorter like:

[tex]\dot{\theta}=-\frac{1}{r \sin{\theta}} \left( \dot{z} r - z \dot{r} \right)[/tex]?

this gives

[tex]\ddot{\theta}=\frac{ \left( \ddot{z} r + \dot{z} \dot{r} - \dot{z} \dot{r} - z \ddot{r} \right) r \sin{\theta} - \left( \dot{r} \sin{\theta} + r \dot{\theta} \cos{\theta} \right) \left( \dot{z} r - z \dot{r} \right) }{r^2 \sin^2{\theta}}[/tex]

[tex]\ddot{\theta}=\frac{-zr \ddot{r} \sin{\theta}- \left( \dot{r} \sin{\theta} + r \dot{\theta} \cos{\theta} \right) \left( \dot{z} r - z \dot{r} \right)}{r^2 \sin^2{\theta}}[/tex]

on the right lines?
 
Last edited by a moderator:
  • #69
latentcorpse said:
[tex]\dot{\theta}=-\frac{1}{r \sin{\theta}} \left(b_z - \cos{\theta} \right) \left( b_x \sin{\theta} \cos{\phi} + b_y \sin{\theta} \sin{\phi} + b_z \cos{\theta} \right)[/tex]
that's ok?

Do [itex]b_z[/itex] and [itex]\cos\theta[/itex] have the same units? If not, the appearance of the factor [itex]b_z-\cos\theta[/itex] should be a dead giveaway that you've made an error somewhere...(It's always a good idea to check the units of your expression at each step of a complicated calculation, it will help cut down on the number of error you make)
 
Last edited by a moderator:
  • #70
you said i was fine at [tex]\dot{\theta}=-\frac{1}{\sqrt{r^4-z^2r^2}} \left(\dot{z}r-z \dot{r} \right)[/tex]

so i need to change the coords here

[tex]\dot{\theta}=-\frac{1}{\sqrt{r^4-r^4 \cos^2{\theta}}} \left(b_z r - r \cos{\theta} \dot{r} \right) = -\frac{1}{r \sin{\theta}} \left( b_z - \cos{\theta} \dot{r} \right)[/tex]
ok that should be better

now

[tex]\ddot{\theta}=- \left( \frac{ \left( - \ddot{r} \cos{\theta} + \dot{r} \dot{\theta} \sin{\theta} \right) r \sin{\theta} - \left( \dot{r} \sin{\theta} + r \dot{\theta} \cos{\theta} \right) \left(b_z - \dot{r} \cos{\theta} \right)}{r^2 \sin^2{\theta}} \right)[/tex]

is that ok? it doesn't look like it's going to get much simpler : i can bring the minus at the front in and cancel the [itex]r \sin{\theta}[/itex] in the first term i guess...
 
Last edited by a moderator:

Similar threads

Back
Top