How to Calculate Christoffel Symbols in Spherical Coordinates?

In summary, we discussed the metric of Euclidean \mathbb{R}^3 in spherical coordinates and how to calculate the Christoffel components \Gamma^{\sigma}{}_{\mu \nu} in this coordinate system using the formula \Gamma^{\sigma}{}_{\mu \nu}=\frac{1}{2} \sum_{\rho} g^{\sigma \rho} \left( \frac{\partial g_{\nu \rho}}{\partial x^{\mu}} + \frac{\partial g_{\mu \rho}}{\partial x^{\nu}} - \frac{\partial g_{\mu \nu}}{\partial x^{\sigma}}
  • #71
latentcorpse said:
you said i was fine at [tex]\dot{\theta}=-\frac{1}{\sqrt{r^4-z^2r^2}} \left(\dot{z}r-z \dot{r} \right)[/tex]

so i need to change the coords here

[tex]\dot{\theta}=-\frac{1}{\sqrt{r^4-r^4 \cos^2{\theta}}} \left(b_z r - r \cos{\theta} \dot{r} \right) = -\frac{1}{r \sin{\theta}} \left( b_z - \cos{\theta} \dot{r} \right)[/tex]
ok that should be better

Why not substitute in your expression for [itex]\dot{r}[/itex] here?
 
Last edited by a moderator:
Physics news on Phys.org
  • #72
i get

[tex]\dot{\theta}=-\frac{1}{r \sin{\theta}} \left(b_z-\cos{\theta} \dot{r} \right)[/tex]

[tex]\dot{\theta}=-\frac{1}{r \sin{\theta}} \left( b_z - b_x \sin{\theta} \cos{\theta} \cos{\phi} - b_y \sin{\theta} \cos{\theta} \sin{\phi} - b_z \cos^2{\theta} \right)[/tex]

[tex]\dot{\theta}=-\frac{1}{r \sin{\theta}} \left( b_z \sin^2{\theta} - b_x \sin{\theta} \cos{\theta} \cos{\phi} - b_y \sin{\theta} \cos{\theta} \sin{\phi} \right)[/tex]

[tex]\dot{\theta}=-\frac{1}{r} \left(b_z \sin{\theta} - b_x \cos{\theta} \cos{\phi} - b_y \cos{\theta} \sin{\phi} \right)[/tex]
now do i take the time derivative of this?

that gives, by product rule:

[tex]\ddot{\theta}=r^{-2} \dot{r} \left( b_z \sin{\theta} - b_x \cos{\theta} \cos{\phi} - b_y \cos{\theta} \sin{\phi} \right) - \frac{1}{r} \left( b_z \dot{\theta} \cos{\theta} + b_x \dot{\theta} \sin{\theta} \cos{\phi} + b_x \dot{\phi} \cos{\theta} \sin{\phi} + b_y \dot{\theta} \sin{\theta} \sin{\phi} - b_y \dot{\phi} \cos{\theta} \cos{\phi} \right)[/tex]

[tex]\ddot{\theta} = \frac{\dot{r}}{r^2} \left(b_z \sin{\theta} - b_x \cos{\theta} \cos{\phi} - b_y \cos{\theta} \sin{\phi} \right) - \frac{1}{r} \left( \dot{\theta} \dot{r} + \dot{\phi} b_x \cos{\theta} \sin{\phi} - \dot{\phi} b_y \cos{\theta} \cos{\phi} \right)[/tex]

is this looking ok? i can't seem to simplify it any further though.
 
Last edited by a moderator:
  • #73
Looks fine to me...now realize that the first term is just

[tex]\frac{\dot{r}}{r^2} \left(b_z \sin{\theta} - b_x \cos{\theta} \cos{\phi} - b_y \cos{\theta} \sin{\phi} \right)=-\frac{\dot{r}\dot{\theta}}{r}[/tex]

And

[tex]-\frac{1}{r}\left(\dot{\phi} b_x \cos{\theta} \sin{\phi} - \dot{\phi} b_y \cos{\theta} \cos{\phi} \right)=\sin\theta\cos\theta\dot{\phi}^2[/tex]

So,

[tex]\ddot{\theta}=-\frac{2}{r}\dot{r}\dot{\theta}+ \sin\theta\cos\theta\dot{\phi}^2[/tex]

Compare that to your second Geodesic equation...:wink:

Edit: Is there a reason you've interpreted [tex]\frac{dx^i}{dt}\frac{dx^i}{dt}[/tex] as [tex]\frac{d^2x^i}{dt^2}[/tex] when calculating your Geodesic equations in post#22?
 
Last edited by a moderator:
  • #74
should the geodesic eqns be

[tex]\frac{d^2 r}{dt^2}-r \frac{d \theta}{dt} \frac{d \theta}{dt} - r \sin^2{\theta} \frac{d \phi}{dt} \frac{d \phi}{dt}=0[/tex]
[tex]\frac{d^2 \theta}{dt^2} + \frac{2}{r} \frac{dr}{dt} \frac{d \theta}{dt} - \sin{\theta} \cos{\theta} \frac{d \phi}{dt} \frac{d \phi}{dt}=0[/tex]
[tex]\frac{d^2 \phi}{dt^2} + \frac{2}{r} \frac{dr}{dt} \frac{d \phi}{dt} + 2 \cot{\theta} \frac{d \theta}{dt} \frac{d \phi}{dt}=0[/tex]?
 
Last edited by a moderator:
  • #75
Yup.
 
  • #76
okay so I am testing the equations now:
looking at the first one i have

[tex]\ddot{r}-r \dot{\theta}^2 - r \sin^2{\theta} \dot{\phi}^2[/tex]
[tex]=\frac{b^2}{r}-\frac{ \left( b_x x + b_y y + b_z z \right)^2}{r^3} + b_z \sin{\theta} - b_x \cos{\theta} \cos{\phi} - b_y \cos{\theta} \sin{\phi} + \frac{2}{r} \left( b_x b_y \cos^2{\phi} + b_y^2 \sin{\phi} \cos{\phi} - b_x^2 \sin{\phi} \cos{\phi} -b_x b_y \sin^2{\phi} \right)[/tex]

i can't get any constructive cancellation after this line though...
 
Last edited by a moderator:
  • #77
It might be easier if you just use the chain rule to find [itex]\ddot{r}[/itex] from this equation [itex]\dot{r}=b_x\sin\theta\cos\phi+ b_y\sin\theta\sin\phi+b_z\cos\theta[/itex]...that way everything is in Spherical coords.
 
Last edited by a moderator:
  • #78
so [tex]\ddot{r}= \dot{\theta} \left( b_x \cos{\theta} \cos{\phi} + b_y \cos{\theta} \sin{\phi} - b_z \sin{\theta} \right) + \dot{\phi} \left( b_y \sin{\theta} \cos{\phi} - b_x \sin{\theta} \sin{\phi} \right)[/tex]

[tex]\ddot{r}=r \dot{\theta}^2 + \dot{\phi} \left( b_y \sin{\theta} \cos{\phi} - b_x \sin{\theta} \sin{\phi} \right)[/tex]

[tex]\ddot{r}=r \dot{\theta}^2 + r \sin^2{\theta} \dot{\phi}^2[/tex]
so geodesic eqns 1 and 2 are obviously satisfied.

the third one is giving me a bit of grief though:

[tex]\ddot{\phi} + \frac{2}{r} \dot{r} \dot{\phi} + 2 \cot{\theta} \dot{\theta} \dot{\phi}[/tex]
[tex]=\frac{-2 \left(b_xb_y \cos^2{\phi} + b_y^2 \sin{\phi} \cos{\phi} - b_x^2 \sin{\phi} \cos{\phi} - b_x b_y \sin^2{\phi} \right)}{r^2 \sin^2{\theta}}[/tex]
[tex]+\frac{2 \left(b_x b_y \sin{\theta} \cos^2{\phi} - b_x^2 \sin{\theta} \cos{\theta} \cos{\phi} + b_y^2 \sin{\theta} \cos{\phi} \sin{\phi} - b_x b_y \sin{\theta} \sin^2{\phi} + b_y b_z \cos{\theta} \cos{\phi} - b_x b_z \sin{\phi} \cos{\theta} \right) }{r^2 \sin{\theta}}[/tex]
[tex]-\frac{2 \cos{\theta}}{r^2 \sin^2{\theta}} \left(b_y b_z \sin{\theta} \cos{\phi} - b_x b_y \cos{\theta} \cos^2{\phi} - b_y^2 \cos{\theta} \cos{\phi} \sin{\phi} - b_x b_z \sin{\theta} \sin{\phi} - b_x^2 \cos{\theta} \sin{\phi} \cos{\phi} + b_x b_y \cos{\theta} \sin{\phi} \cos{\phi} \right)[/tex]

which is proving hard to simplify. in particular the second term has a denominator that is different from that of the the first two terms - should i multiply through by [itex]\frac{\sin{\theta}}{\sin{\theta}}[/itex]?
 
Last edited by a moderator:
  • #79
It shouldn't be too hard to simplify; just collect terms with [itex]b_x^2[/itex] in them, and terms with [itex]b_xb_y[/itex] etc..
 
  • #80
that goes to

[tex]\frac{2 b_x b_y}{r^2 \sin^2{\theta}} \left( - \cos^2{\phi} + \sin^2{\phi} + \sin^2{\theta} \cos^2{\phi} - \sin^2{\theta} \sin^2{\phi} + \cos^2{\theta} \cos^2{\phi} - \cos^2{\theta} \sin{\phi} \cos{\phi} \right)[/tex]
[tex]+\frac{2b_x b_z}{r^2 \sin^2{\theta}} \left(- \sin{\theta} \cos{\theta} \sin{\phi} + \sin{\theta} \sin{\phi} \right) = \frac{2 b_y b_z}{r^2 \sin^2{\theta}} \left( \sin{\theta} \cos{\theta} \cos{\phi} - \sin{\theta} \cos{\phi} \right)[/tex]
[tex]+\frac{2 b_y^2}{r^2 \sin^2{\theta}} \left( - \sin{\phi} \cos{\phi} + \sin^2{\theta} \sin{\phi} \cos{\phi} + \cos^2{\theta} \sin{\phi} \cos{\phi} \right) + \frac{2 b_x^2}{r^2 \sin^2{\theta}} \left( \sin{\phi} \cos{\phi} - \sin^2{\theta} \cos{\theta} \cos{\phi} + \cos^2{\theta} \sin{\phi} \cos{\phi} \right)[/tex]

looks like I've made a mistake somewhere but i can't see where.
 
Last edited by a moderator:
  • #81
The quickest way to do this is probably to start with this expression (from post #60)

[tex]\ddot{\phi}=\frac{-2r^2 \sin^2{\theta} \left(b_x \cos{\phi} + b_y \sin{\phi} \right) \left( b_y \cos{\phi} - b_x \sin{\phi} \right)}{r^4 \sin^4{\theta}}=\frac{-2\dot{\phi} \left(b_x \cos{\phi} + b_y \sin{\phi} \right) }{r\sin{\theta}}[/tex]
 
  • #82
got it finally! thank you so much for your help!

what did you mean in post 23 when you asked if there could be any other solutions?
how would i go about answering that?
 
  • #83
Wald discusses a certain uniqueness theorem right after equation 3.3.5...does that help you here?:wink:
 
  • #84
well the idea behind it would suggest that, no, there can be no other solutions.

however, the theorem says that solutions are only unique if we define a point p in hte manifold M and a tangent vector, [itex]T^a \in V_p[/itex]. In the question, neither of these were specified so perhaps that does leave scope for alternative solutions?
 
  • #85
Realize that any potential solution [itex]\textbf{r}(t)[/itex] can be expanded in a Taylor series as

[tex]\textbf{r}(t)=\textbf{a}+\textbf{b}t+\textbf{c}t^2+\ldots[/tex]

If [itex]\textbf{a}[/itex] and [itex]\textbf{b}[/itex] are specified, the uniqueness theorem tells you there is a unique solution...but you just showed that [itex]\textbf{r}(t)=\textbf{a}+\textbf{b}t[/itex] satisfies the geodesic equation for all [itex]\textbf{a}[/itex] and [itex]\textbf{b}[/itex]...therfore ____?
 
  • #86
therefore straight lines are the unique solution as the values of a and b in the taylor expansion are precisely those of the coefficients a and b in the straight line eqn given in Cartesian coordinates, is that ok?

how did you manage to get round the fact that the point p and the tangent weren't specified though?
 
  • #87
Doesn't [itex]\textbf{a}[/itex] specify a point on the geodesic (where [itex]t=0[/itex]) ?...And the tangent vector is___?
 
  • #88
the vector [itex]\vec{b}[/itex]. great. thanks.
 
Last edited by a moderator:

Similar threads

Back
Top