- #71
ROOT0X57B
- 83
- 7
Okay, so if I got it all good :
$$\displaystyle \frac{1}{2}M{v_0}^2 + m{R_\text{ext}}^2{\omega_0}^2 = \frac{1}{2}Mv^2 + m{R_\text{ext}}^2\omega^2 - 2\int F_Bdx$$
##dx = R_\text{ext}d \theta## so
$$\displaystyle \frac{1}{2}M{v_0}^2 + m{R_\text{ext}}^2{\omega_0}^2 = \frac{1}{2}Mv^2 + m{R_\text{ext}}^2\omega^2 - 2\int \mu_BP_BS_B.R_\text{ext}d \theta$$
##\theta_0 = 0##, so
$$\displaystyle \frac{1}{2}M{v_0}^2 + m{R_\text{ext}}^2{\omega_0}^2 = \frac{1}{2}Mv^2 + m{R_\text{ext}}^2\omega^2 - 2 \mu_BP_BS_BR_\text{ext} \theta$$
##v = R_\text{ext}\omega##, so
$$\displaystyle \frac{1}{2}M{v_0}^2 + {mv_0}^2 = \frac{1}{2}Mv^2 + mv^2 - 2 \mu_BP_BS_BR_\text{ext} \theta$$
$$\displaystyle \bigg(\frac{1}{2}M+m\bigg){v_0}^2 = \bigg(\frac{1}{2}M+m\bigg)v^2- 2 \mu_BP_BS_BR_\text{ext} \theta$$
$$\displaystyle \bigg(\frac{1}{2}M+m\bigg){v}^2 = \bigg(\frac{1}{2}M+m\bigg){v_0}^2 + 2 \mu_BP_BS_BR_\text{ext} \theta$$
$$\displaystyle v^2 = v_0^2 + \frac{4 \mu_BP_BS_BR_\text{ext}}{M+2m}\theta$$
As ##v = R_\text{ext}\omega##, ##x = R_\text{ext}\theta## (##R_\text{ext}## is constant)
$$\displaystyle {\dot x}^2 = {{\dot x}_0}^2 + \frac{4 \mu_BP_BS_B}{M+2m}x$$
So I have to solve the linear differential equation :
$$\displaystyle {\dot x}^2 - \frac{4 \mu_BP_BS_B}{M+2m}x = {v_0}^2$$
$$\displaystyle \frac{1}{2}M{v_0}^2 + m{R_\text{ext}}^2{\omega_0}^2 = \frac{1}{2}Mv^2 + m{R_\text{ext}}^2\omega^2 - 2\int F_Bdx$$
##dx = R_\text{ext}d \theta## so
$$\displaystyle \frac{1}{2}M{v_0}^2 + m{R_\text{ext}}^2{\omega_0}^2 = \frac{1}{2}Mv^2 + m{R_\text{ext}}^2\omega^2 - 2\int \mu_BP_BS_B.R_\text{ext}d \theta$$
##\theta_0 = 0##, so
$$\displaystyle \frac{1}{2}M{v_0}^2 + m{R_\text{ext}}^2{\omega_0}^2 = \frac{1}{2}Mv^2 + m{R_\text{ext}}^2\omega^2 - 2 \mu_BP_BS_BR_\text{ext} \theta$$
##v = R_\text{ext}\omega##, so
$$\displaystyle \frac{1}{2}M{v_0}^2 + {mv_0}^2 = \frac{1}{2}Mv^2 + mv^2 - 2 \mu_BP_BS_BR_\text{ext} \theta$$
$$\displaystyle \bigg(\frac{1}{2}M+m\bigg){v_0}^2 = \bigg(\frac{1}{2}M+m\bigg)v^2- 2 \mu_BP_BS_BR_\text{ext} \theta$$
$$\displaystyle \bigg(\frac{1}{2}M+m\bigg){v}^2 = \bigg(\frac{1}{2}M+m\bigg){v_0}^2 + 2 \mu_BP_BS_BR_\text{ext} \theta$$
$$\displaystyle v^2 = v_0^2 + \frac{4 \mu_BP_BS_BR_\text{ext}}{M+2m}\theta$$
As ##v = R_\text{ext}\omega##, ##x = R_\text{ext}\theta## (##R_\text{ext}## is constant)
$$\displaystyle {\dot x}^2 = {{\dot x}_0}^2 + \frac{4 \mu_BP_BS_B}{M+2m}x$$
So I have to solve the linear differential equation :
$$\displaystyle {\dot x}^2 - \frac{4 \mu_BP_BS_B}{M+2m}x = {v_0}^2$$