How to compute how much energy is released in nuclear fusion?

AI Thread Summary
To compute the energy released in nuclear fusion, the initial step involves calculating the mass loss using the equation Δm = m(1^2H) + m(1^3H) - m(2^4He) - m(0^1n), resulting in a mass loss of 0.0188828u. This mass loss translates to a reaction energy of approximately 2.81 x 10^-12 J per fusion reaction. However, the total energy released per kilogram is significantly higher, estimated at about 3.4 x 10^14 J. The discrepancy arises from the need to consider the number of reactions occurring in a given mass of fuel. Understanding the energy per reaction versus the total energy output per kilogram is crucial for accurate calculations in nuclear fusion energy.
Mestudyingphysics
Messages
1
Reaction score
1
Homework Statement
In a fusion power plant, it is planned to use deuterium and tritium, so that one gets helium and neutrons. How much one gets energy if we have $1\textrm{ kg}$ fuel?
Relevant Equations
$\Delta m=m(_1^2\textrm{H})+m(_1^3\textrm{H})-m(_2^4\textrm{He})-m(_0^1\textrm{n})$
I thought the first step is to compute the loss of mass. ##\Delta m=m(_1^2\textrm{H})+m(_1^3\textrm{H})-m(_2^4\textrm{He})-m(_0^1\textrm{n})=2.0141018u+3.0160493u- 4.0026033u-1.0086650u=0.0188828u##. The corresponding reaction energy is ##0.0188828 \cdot 931,5MeV=17.54MeV\approx 2.81\cdot 10^{-12}J##. But the answer is about ##3.4\cdot 10^{14}\textrm{ J}##. What is my mistake?
 
Last edited:
Physics news on Phys.org
If the energy per reaction is 2.81e-12 J, what is the energy per kg?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top