How to Derive Yang-Mills Theories from a Kaluza-Klein Perspective?

  • Thread starter Thread starter BVM
  • Start date Start date
  • Tags Tags
    Fields
AI Thread Summary
The discussion revolves around deriving Yang-Mills theories from a Kaluza-Klein perspective as presented in Kurt Sundermeyer's book. The user is attempting to follow the derivation involving the transformation of B-fields and the expansion of these fields in terms of Killing vectors. They express confusion regarding the appearance of a specific term and the factor of 1/g in the derived equations. Ultimately, they realize that the extra term cancels out due to the vanishing divergence of a Killing vector, resolving their misunderstanding. This highlights the importance of careful consideration of mathematical identities in theoretical physics derivations.
BVM
Messages
9
Reaction score
0

Homework Statement


I am going through the book "Symmetries in Fundamental Physics" by Kurt Sundermeyer and in his part on deriving Yang-Mills theories from a Kaluza-Klein perspective I seem to be stuck on a small step in the derivation.

Homework Equations


He expands the metric in a typical Kaluza-Klein-like style
## \begin{cases}
&\hat{g}^{0}_{\mu \nu} (x) = W(\phi) g_{\mu \nu} + f(\phi)h_{\iota \kappa} \mathcal{B}^{\iota}_{\mu}\mathcal{B}^{\kappa}_{\nu}\\
&\hat{g}^{0}_{\mu \kappa} (x) = f(\phi) h_{\iota \kappa}\mathcal{B}^{\iota}_{\mu}\\
&\hat{g}^{0}_{\iota \kappa} (x) = f(\phi)h_{\iota \kappa}
\end{cases}##
and derives from it that under diffeomorphism, the B-field should transform as
##\mathcal{B}'^{\iota}_{\mu} = \frac{\partial x^{\nu}}{\partial x'^{\mu}}\left( \frac{\partial \theta'^{\iota}}{\partial \theta^{\kappa}} \mathcal{B}^{\kappa}_{\nu} - \frac{\partial \theta'^{\iota}}{\partial x^{\nu}} \right).##
Now, by considering the isometries infinitesimally
##\theta'^{\iota} = \theta^{\iota} + \epsilon^a(x)K^{\iota}_a(\theta)##
and expanding the B-fields in terms of the Killing vectors
##\mathcal{B}^{\iota}_{\mu} = g K^{\iota}_{a} \mathcal{A}^{a}_{\mu}##
he gets
##g K^{\iota}_{d} \mathcal{A}^{d}_{\mu} = (\delta^{\iota}_{\kappa} + \epsilon^a \partial_{\kappa}K^{\iota}_a) g K^{\kappa}_{b} \mathcal{A}^{b}_{\mu} - K^{\iota}_{a}\partial_{\mu}\epsilon^a.##

This i can follow, but now he claims that via
##K^{\kappa}_{a} \partial_{\kappa} K^{\iota}_{b} - K^{\kappa}_{b} \partial_{\kappa} K^{\iota}_{a} = f_{abc} K^{\iota}_{c}##
he can get
##\mathcal{A}'^{a}_{\mu} = \mathcal{A}^{a}_{\mu} + \frac{1}{g}f^{bca}\mathcal{A}^b_{\mu}\epsilon^c - \frac{1}{g} \partial_{\mu}\epsilon^a.##

3. The attempt at a solution
By just plugging in the relation I can get as far as
##\mathcal{A}'^{a}_{\mu} = \mathcal{A}^{a}_{\mu} + f^{bca}\mathcal{A}^b_{\mu}\epsilon^c + \epsilon^c(K^{\iota}_a)^{-1}K^{\kappa}_{c}(\partial_{\kappa} K^{\iota}_b)\mathcal{A}^b_{\mu} - \frac{1}{g} \partial_{\mu}\epsilon^a##
but I don't see how the extra term cancels or how the ##\frac{1}{g}## appears in the second term.
 
Physics news on Phys.org
BVM said:
By just plugging in the relation I can get as far as
##\mathcal{A}'^{a}_{\mu} = \mathcal{A}^{a}_{\mu} + f^{bca}\mathcal{A}^b_{\mu}\epsilon^c + \epsilon^c(K^{\iota}_a)^{-1}K^{\kappa}_{c}(\partial_{\kappa} K^{\iota}_b)\mathcal{A}^b_{\mu} - \frac{1}{g} \partial_{\mu}\epsilon^a##
but I don't see how the extra term cancels or how the ##\frac{1}{g}## appears in the second term.

Performing the contraction, we find

$$ \epsilon^c(K^{\iota}_a)^{-1}K^{\kappa}_{c}(\partial_{\kappa} K^{\iota}_b)\mathcal{A}^b_{\mu} = \epsilon^a(\partial_{\kappa} K^{\kappa}_b)\mathcal{A}^b_{\mu},$$

but the divergence of a Killing vector vanishes, so this is zero.
 
Oh my god how did I miss this.

Thanks a lot!
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top