Index of Refraction Homework: Investigating Snell's Law

Click For Summary
The discussion revolves around verifying Snell's Law of Refraction by measuring the index of refraction for water using a half-circle setup. The procedure involved measuring an incident ray at a 30-degree angle from the normal line and aligning pins on the curved side. A key question raised is why refraction was not observed on the curved side. It is suggested that any line drawn to the curved side acts as a normal line, implying no refraction occurs. The inquiry highlights the relationship between the angle of incidence and the geometry of the setup.
uchicago2012
Messages
74
Reaction score
0

Homework Statement


In a lab we did, we verified Snell's Law of Refraction by measuring the index of refraction for water. We filled a plastic half-circle with water and drew a line normal to the flat side. We measured an angle 30 degrees from the normal line (called the incident ray). We then looked at a pin on this incident ray through the water and aligned pins with it on the curved side. I attached our procedure in case none of that makes sense. But I was wondering why we didn't do refraction on the curved side?


Homework Equations


Snell's Law: n1sin(θ1) = n2sin(θ2)

3. The attempt at the solution
I thought it might be because any line we draw to the curved side would be a normal line and thus there would be no refraction?
 

Attachments

Physics news on Phys.org
Any ray that originates in at the center of the flat side that passes through the water and exits the curved side is following a radius of the arc. What does that tell you about the angle of incidence of the ray with the curved side (from the water side)?
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 4 ·
Replies
4
Views
549
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
4
Views
1K
Replies
4
Views
2K