- #176
TrickyDicky
- 3,507
- 28
Well certainly the latter has been a major factor, but I think we have it moreless under control.Muphrid said:As has been pointed out, the generalization of the directional derivative of a vector field is still going to be a vector field (a rank-1 tensor) in curved spaces. Ultimately, is that not what started this disagreement--the mistaken belief that it would somehow be rank-2? Or did that all stem from the unclear definition of "covariant derivative" (which, I concede, it may be that physicists have broken with strict mathematical definitions and caused the term to be used more broadly than it was historically defined, in an abuse of the term)?
Let's give a final look to the point you mention first. You have just conceded that at least in the more mathematical sense, there is definition of covariant derivative as generalization of the directional derivative when a connection is needed which was the definition I was using, and this generalization always increases the order of a tensor by one. So why would be my belief mistaken?
When the outcome is the same order, it is not the generalization, it is a directional derivative proper, there is nothing covariant about it, no special strategy for parallel transport is needed to keep the vectors parallel, no connection is used, otherwise the outcome wouldn't be just another vector field.
Consider this paragraph from wikipedia:
" In the case of Euclidean space, one tends to define the derivative of a vector field in terms of the difference between two vectors at two nearby points. In such a system one translates one of the vectors to the origin of the other, keeping it parallel. With a Cartesian (fixed orthonormal) coordinate system we thus obtain the simplest example: covariant derivative which is obtained by taking the derivative of the components. In the general case, however, one must take into account the change of the coordinate system. For example, if the same covariant derivative is written in polar coordinates in a two dimensional Euclidean plane, then it contains extra terms that describe how the coordinate grid itself "rotates". In other cases the extra terms describe how the coordinate grid expands, contracts, twists, interweaves, etc."
It makes clear the Cartesian coord. flat case is a special case where the generalization is not needed and therefore