- #106
sillyquark
- 13
- 0
There is a thought experiment to help understand the equivalence of gravitational and inertial mass (and general relativity). Imagine you were motionless in an elevator (on Earth) and you activated a laser horizontal to you. Now imagine yourself in the same elevator, in space, infinitely far from everything else so that you and the elevator are an isolated system. Now imagine that the elevator started to accelerate with magnitude g. Now as the elevator is accelerating, shine the laser in the same way as before. In the first case the force you feel is the gravitational force, ## F_{g} ##, in the second case you feel the force of acceleration from the elevator, ## F_{a} ##.
Let ## m_{i} ## be inertial mass and ## m_{g} ## be gravitational mass. In the second case you are accelerating with acceleration g and you would expect to see the laser curve from the horizontal. Now in the first case what do you expect to see/feel? The force acting on you is ## F_{g}= m_{g} g ##, in the second case the force acting on you was ## F_{a} = m_{i} g ##. If these to forces are equivalent than ## m_{g} = m_{i} ##, this would also implies that the two situations are equivalent and that in the first case you expect to see the laser curve from the horizontal exactly the same as if you were accelerating. This tells us that gravity acts like a field of acceleration. At this point you may want to search for general relativity as that is what this thought experiment was setting up.
Let ## m_{i} ## be inertial mass and ## m_{g} ## be gravitational mass. In the second case you are accelerating with acceleration g and you would expect to see the laser curve from the horizontal. Now in the first case what do you expect to see/feel? The force acting on you is ## F_{g}= m_{g} g ##, in the second case the force acting on you was ## F_{a} = m_{i} g ##. If these to forces are equivalent than ## m_{g} = m_{i} ##, this would also implies that the two situations are equivalent and that in the first case you expect to see the laser curve from the horizontal exactly the same as if you were accelerating. This tells us that gravity acts like a field of acceleration. At this point you may want to search for general relativity as that is what this thought experiment was setting up.
Last edited: