- #141
Zafa Pi
- 631
- 132
BTW, it seems that you could accomplish what you want in an easier fashion. Alice randomly selects an observable the flips a coin to decide either +1 or -1 which determines a state, then calls up Bob and tells him the state, then Bob makes a measurement by his randomly selected observable and they violate Bell's inequality.Simon Phoenix said:Well I won't derive the inequality for you, but I will give you an argument that justifies my comments.
Consider the normal Bell experiment set up. Something like ##A \leftarrow S \rightarrow B## where some source fires off particles to Alice and Bob measuring at 0, 60 and 120. You agree we'll see a violation of the Bell inequality if the source is generating entangled states. We'll assume a source of perfectly entangled particles.
Now although it's usual to assume Alice and Bob are (roughly) equidistant from the source and measure (roughly) simultaneously, it's not necessary to do so to see the violation. Things are set up in the 'usual' fashion so that we can draw some conclusions about local hidden variables. Alice and Bob will still see a violation if Bob stores the particles, makes several cups of tea, and then does his measurements. As long as we can associate Alice's measurement and Bob's measurement on the partner particles we'll still see the violation.
The distance of the source to the 2 parties is also irrelevant (for inequality violation) so we'll still get the inequality violation with the following set up
$$A \leftarrow S \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow B$$
So we now imagine the source to be In Alice's lab. Now what happens when Alice makes a measurement? If she makes a measurement then she'll know, by virtue of the entanglement, what state is on its merry way to Bob. So all Alice has to do is to make a measurement, stop the particle going off to Bob, and now prepare a new single particle (unentangled with anything) in the state that would have gone on to Bob - which she knows, because she's made a measurement.
You should now be able to see that we can drop the entangled source and measurement part altogether. Alice simply prepares particles uniformly at random in one the six possible measurement eigenstates and sends them off to Bob. There'll be a Bell inequality violation between the preparation data of Alice and the measurement data of Bob.
Of course, we can't draw any of the important conclusions about local variables from doing things this way, but it does show us that we don't actually need entanglement to see a violation of the mathematical inequality - and also, if you think about it, does show us the equivalence of the proper/improper mixed states.
Of course this nothing to with the usual Bell set up. But it's possible I am not following you.