- #176
atyy
Science Advisor
- 15,169
- 3,379
http://www.scholarpedia.org/article/Wightman_quantum_field_theory
If I understand correctly, the cluster decomposition does mean spacelike experiments have uncorrelated results - BUT the caveat is that it refers to ground state expectation values, and is derived from (1) no superluminal signalling (2) Poincare invariance of the ground state (3) uniqueness of the ground state.
The ground state is a property of the Hamiltonian, so this puts a constraint on the Hamiltonian, which provides some notion of "interactions". However, the "no superluminal signalling" assumption does enter, so cluster decomposition doesn't seem to provide a notion of "local interactions" that is distinct from "no superluminal signalling"?
If I understand correctly, the cluster decomposition does mean spacelike experiments have uncorrelated results - BUT the caveat is that it refers to ground state expectation values, and is derived from (1) no superluminal signalling (2) Poincare invariance of the ground state (3) uniqueness of the ground state.
The ground state is a property of the Hamiltonian, so this puts a constraint on the Hamiltonian, which provides some notion of "interactions". However, the "no superluminal signalling" assumption does enter, so cluster decomposition doesn't seem to provide a notion of "local interactions" that is distinct from "no superluminal signalling"?
Last edited: