Is the Induced Electric Field Proportional to Radius in a Cylindrical Region?

AI Thread Summary
The discussion clarifies that the induced electric field in a cylindrical region is indeed proportional to the radius, as derived from the Faraday-Maxwell Law. The equation E * 2πr = - B * π r² leads to E = B * r / 2, confirming this relationship. It emphasizes that while there is no time-varying electric flux, there is a time-varying magnetic flux present. The final adjustment suggests replacing B with dB/dt, which is treated as a constant in this context. Overall, the analysis concludes that the induced electric field's magnitude increases linearly with the radius.
hidemi
Messages
206
Reaction score
36
Homework Statement
A cylindrical region of radius R contains a uniform magnetic field, parallel to its axis, with magnitude that is changing linearly with time. If r is the radial distance from the cylinder axis, the magnitude of the induced electric field inside the cylindrical region is proportional to

A) R
B) r
C) r²
D) 1/r
E) 1/ r²

The answer is B.
Relevant Equations
(See better interpretation in the "Attempt at a Solution" section)
I used the equation below and the attachment to rationalize.
https://www.physicsforums.com/attachments/282163
 

Attachments

  • 1.jpg
    1.jpg
    37.5 KB · Views: 231
Physics news on Phys.org
You used Ampere-Maxwell law while you should use Faraday-Maxwell Law. The problem statement asks for the magnitude of the electric field. There is no time-varying electric flux in this problem setup (so ##\frac{d\Phi_E}{dt}=0## but there is time-varying magnetic flux (linearly time varying)).
 
\oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {\ell }}=-{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S}

E * 2πr = - B * π r²
E = B * r /2
Therefore, E is proportional to r. Is this correct?
 
hidemi said:
\oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {\ell }}=-{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S}

E * 2πr = - B * π r²
E = B * r /2
Therefore, E is proportional to r. Is this correct?
Yes the above is correct.
 
hidemi said:
\oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {\ell }}=-{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S}

E * 2πr = - B * π r²
E = B * r /2
Therefore, E is proportional to r. Is this correct?
Change B to dB/dt (= constant).
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top