- #71
marcus
Science Advisor
Gold Member
Dearly Missed
- 24,775
- 792
TrickyDicky said:Hmmm, that paper is almost two decades old, but I guess the concept hasn't changed much from then since you are linking it...
Yes! I do think the Connes Rovelli paper is very well written. What they say there can probably not be said much better by anybody. But the idea has developed and the most recent paper is, as you may know, Rovelli's September 2012 "General relativistic statistical mechanics".
I think the point is this is a major outstanding problem that may be nearing the time when it is ripe to work on. In a general covariant theory there is no preferred idea of time, and so one cannot do thermodynamics or stat mech as we ordinarily think of it.
One can do these things on an arbitrary fixed curved spacetime, but that is not the full GR treatment. So eventually humans HAVE to do thermo and stat mech in full GR context. Or the quantum version of that. But researchers must use their efforts wisely and not work on problems which are not ready to be addressed. For a while they only slowly chip away, or prepare some ideas to start with. that is how i see it.
I think one should not immediately think of a 4D lorentzian manifold (just my private opinion) I think one should think of the observable algebra, possibly abstractly as a C*-algebra. And the state embodies what we think we know and expect about all the observations. The fine thing is that this state itself uniquely specifies a one-parameter flow on the observables---the modular group of automorphisms of the algebra---uniquely up to some equivalence relation.
that is very abstract, but then one can in various cases make it specific using the familiar tools of the Hilbertspace, the 4D manifold, the fields written on the manifold, and so on. Or (I don't know) maybe LQG tools and Hilbertspace. At the moment I do not see any suggestion of a connection with LQG, it seems like an entirely separate development. (Except for sharing the general covariant GR perspective.)