Kinetic & Potential Energy of a Pendulum

AI Thread Summary
When a pendulum is released, it starts with zero kinetic energy and zero potential energy at the lowest point. The potential energy reference level affects calculations, as it can be set at different heights. After the pendulum hits the rod, it retains a speed that can be calculated, which allows for the analysis of its motion as a shorter pendulum with half the original length. The subsequent motion is determined by this new length and the speed at the lowest point. Understanding these principles is essential for analyzing the energy transformations in pendulum dynamics.
VicGong
Messages
1
Reaction score
0
Homework Statement
Assume a pendulum of length L is released from angle theta. When it swings to its lowest point (at the point where the string is vertical). the string hits a rod that is perpendicular to the plane of the swing and positioned at 1/2 L. Find an expression for the angle to which the pendulum will swing after hitting the bar.
Relevant Equations
PE = mgh
KE = 1/2 mv^2
TME = PE + KE
When the pendulum is released, the Kinetic Energy should be 0. When the pendulum is at the bottom/hits the rod, it should have 0 potential energy. However, I don't quite understand what happens after it hits the rod.
 
Physics news on Phys.org
VicGong said:
When the pendulum is at the bottom/hits the rod, it should have 0 potential energy.
This depends on where you put the reference level for your potential.

What conservation laws are applicable?
 
Hello @VicGong,
:welcome: ##\qquad## !​
VicGong said:
what happens after it hits the rod
Can you describe it in words ?
Perhaps do the experiment :smile: ?

Note that "it should have 0 potential energy" defines a zero-point for the potential energy.

[edit] Ah! Oro was a fraction of a second faster

##\ ##
 
VicGong said:
However, I don't quite understand what happens after it hits the rod.
When the string hits the rod, the pendulum bob is moving at some speed ##v_0## which you can easily calculate. The subsequent motion will be that of a pendulum of length ##\frac{1}{2}L## that has speed ##v_0## at the lowest point of its motion.
 
  • Like
Likes VicGong and Lnewqban
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top