A Lame parameter mu = shear modulus derivation (rogue factor of 2)

AI Thread Summary
The discussion centers on the derivation of the shear modulus G being equal to the Lame parameter μ. The original poster correctly applies the linear, symmetric, isotropic stress-strain formula but mistakenly concludes that G equals 2μ. The key correction involves recognizing that the true shear strain is half of the engineering shear strain, which is crucial for tensor calculations. This adjustment leads to the correct relationship, μ = G. Understanding this distinction is essential for accurate material property analysis.
Twigg
Science Advisor
Gold Member
Messages
893
Reaction score
483
Hello,

I am trying and failing to derive that the shear modulus ##G## is equal to the Lame parameter ##\mu##. I start with the linear, symmetric, isotropic stress-strain formula: $$\sigma = \lambda \mathrm{tr}(\epsilon) \mathrm{I} + 2\mu \epsilon$$ I then substitute a simple (symmetric) shear strain: $$\epsilon = \epsilon_{xy} (\hat{x} \otimes \hat{y} + \hat{y} \otimes \hat{x} )$$ But then I end up with $$\sigma_{xy} = 2\mu \epsilon_{xy}$$ or equivalently $$G = 2\mu$$ What did I goof up?

Thanks!
 
Physics news on Phys.org
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top