- #71
Dale
Mentor
- 35,773
- 14,214
That is the parametric equation of a straight line in spherical coordinates where r0 is the radius of closest approach, v is the velocity, and the line lies in the equatorial plane. Any arbitrary straight line may be brought into this form by a suitable rotation, so it is the simplest form without loss of generality.Altabeh said:Completely nonsense and irrelevant. What is your reason that [tex]x=(t,r,\theta,\phi)=\left(t,\sqrt{t^2v^2+r_0^2},\frac{\pi}{2},atan(tv,r_0)\right)[/tex] is inertial and what does your "inertial" mean here?
In flat spacetime this equation, being the equation of a straight line, is inertial by definition. Your equation is wrong because it falsely identifies this worldline as being non-inertial, even locally. Furthermore, as I showed above it falsely identifies uniform circular motion in spherical coordinates as being inertial. Your equation is not even generally valid in flat spacetime, let alone in curved spacetimes.
Last edited: