Altabeh
- 657
- 0
DaleSpam said:Then it shouldn't be so difficult for you to come up with one single example of an experiment where the two different coordinate systems predict different measured results.
If a theory is determined to exist mathematically which sounds incompatible with an-already-believed-to-be-true theory whereas any experiment has not yet been carried out to support the idea behind that theory does actually raise a probablity in the whole of the known theory here.
Usually I say it the other way around. I.e. that an observer has a coordinate system (where they are at rest). But I am comfortable with your phrasing.
Okay, now it sounds like we agree that there is also a specific observer for either of the Rindler coordinates (flat spacetime) or the Fermi normal coordinates (the extension of Rindler coordinates into curved spacetimes.)
OK, it sounds to me like we may largely agree. To be clear, do you agree
1) that an inertial object has a geodesic worldline
2) that whether or not a worldline is a geodesic is independent of the coordinates, and
3) that inertial/geodesic worldlines are straight lines in flat spacetime, but
4) you disagree about my use of the word "straight" to describe geodesic worldlines in curved spacetime.
1- Speaking locally, an inertial object has a geodesic worldline from the perspective of all observers;
2- Yes;
3- Yes;
4- In your own way of using "straight", I do disagree (The local problem).
AB