Light incident on a sphere, focused at a distance ##2R##

AI Thread Summary
The discussion focuses on the application of the refraction equation for a spherical surface to determine the index of refraction of a glass sphere. The equation used is ##\frac{n_1}{p}+\frac{n_2}{q}=\frac{n_2-n_1}{R}##, with the assumption that the object distance ##p## is infinite and the image distance ##q## is set to ##2R##. By substituting these values, the calculation yields an index of refraction ##n_2=2## for the sphere. The reasoning presented is confirmed to be sound, indicating a clear understanding of the refraction principles involved. Overall, the calculations and assumptions align with optical physics concepts.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A solid sphere with index of refraction ##n## and radius ##R##, placed in air, is illuminated by a beam of light coming from a source at a great distance, which is focused on the bottom surface of the sphere. Determine the value of ##n##.
Relevant Equations
##\frac{n_1}{p}+\frac{n_2}{q}=\frac{n_2-n_1}{R}##
I used the equation for the refraction on a spherical surface: ##\frac{n_1}{p}+\frac{n_2}{q}=\frac{n_2-n_1}{R}##, where ##n_1=1## is the index of refraction of air, ##n_2## the index of refraction of the sphere, ##R## is the radius of the glass sphere, ##p## is the object distance which, since the rays are parallel I assumed to be infinite, ##p=\infty##, and ##q## is the image distance, which should be ##q=2R##. Substituting and solving for ##n_2## I get ##n_2=2##.

Does my reasoning make sense? Thanks.
 

Attachments

  • refraction.png
    refraction.png
    8.3 KB · Views: 123
Physics news on Phys.org
Looks good to me.
 
Full size image.
refraction.png
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top