- #421
- 24,775
- 792
A third new Bojowald
we've been getting a new Bojowald paper every few days. this is the the third that have been posted lately, since 14 november actually----so three in just the past week.
http://arxiv.org/abs/gr-qc/0511108
Spherically Symmetric Quantum Geometry: Hamiltonian Constraint
Martin Bojowald, Rafal Swiderski
33 pages
AEI-2005-171, NI05065
"Variables adapted to the quantum dynamics of spherically symmetric models are introduced, which further simplify the spherically symmetric volume operator and allow an explicit computation of all matrix elements of the Euclidean and Lorentzian Hamiltonian constraints. The construction fits completely into the general scheme available in loop quantum gravity for the quantization of the full theory as well as symmetric models. This then presents a further consistency check of the whole scheme in inhomogeneous situations, lending further credence to the physical results obtained so far mainly in homogeneous models. New applications in particular of the spherically symmetric model in the context of black hole physics are discussed."
Ooops, make that FOUR Bojo papers appearing in the past 7 days, here is another, this time in the Astronomy-Astrophysics department:
http://arxiv.org/abs/astro-ph/0511557
Universe scenarios from loop quantum cosmology
Martin Bojowald
16 pages, 8 figures, plenary talk at "Pomeranian Workshop in Fundamental Cosmology", Pobierowo, Sep 2005
AEI-2005-168
"Loop quantum cosmology is an application of recent developments for a non-perturbative and background independent quantization of gravity to a cosmological setting. Characteristic properties of the quantization such as discreteness of spatial geometry entail physical consequences for the structure of classical singularities as well as the evolution of the very early universe. While the singularity issue in general requires one to use difference equations for a wave function of the universe, phenomenological scenarios for the evolution are based on effective equations implementing the main quantum modifications. These equations show generic bounces as well as inflation in diverse models, which have been combined to more complicated scenarios."
we've been getting a new Bojowald paper every few days. this is the the third that have been posted lately, since 14 november actually----so three in just the past week.
http://arxiv.org/abs/gr-qc/0511108
Spherically Symmetric Quantum Geometry: Hamiltonian Constraint
Martin Bojowald, Rafal Swiderski
33 pages
AEI-2005-171, NI05065
"Variables adapted to the quantum dynamics of spherically symmetric models are introduced, which further simplify the spherically symmetric volume operator and allow an explicit computation of all matrix elements of the Euclidean and Lorentzian Hamiltonian constraints. The construction fits completely into the general scheme available in loop quantum gravity for the quantization of the full theory as well as symmetric models. This then presents a further consistency check of the whole scheme in inhomogeneous situations, lending further credence to the physical results obtained so far mainly in homogeneous models. New applications in particular of the spherically symmetric model in the context of black hole physics are discussed."
Ooops, make that FOUR Bojo papers appearing in the past 7 days, here is another, this time in the Astronomy-Astrophysics department:
http://arxiv.org/abs/astro-ph/0511557
Universe scenarios from loop quantum cosmology
Martin Bojowald
16 pages, 8 figures, plenary talk at "Pomeranian Workshop in Fundamental Cosmology", Pobierowo, Sep 2005
AEI-2005-168
"Loop quantum cosmology is an application of recent developments for a non-perturbative and background independent quantization of gravity to a cosmological setting. Characteristic properties of the quantization such as discreteness of spatial geometry entail physical consequences for the structure of classical singularities as well as the evolution of the very early universe. While the singularity issue in general requires one to use difference equations for a wave function of the universe, phenomenological scenarios for the evolution are based on effective equations implementing the main quantum modifications. These equations show generic bounces as well as inflation in diverse models, which have been combined to more complicated scenarios."
Last edited: