- #71
- 24,775
- 792
short exerpt from Smolin article
several people have expressed interest in the SciAm January 2004 article by Lee Smolin, "Atoms of Space and Time"
The complete article is probably worth a visit to your local public library. It is written for general audience but manages to give a fairly clear picture of the field and how it developed. Here is an exerpt, as a sample, from the section where Smolin is describing how he and some others got started:
-------quote page 68----
...In the mid-1980s a few of us...Ashtekar...Jacobson...Rovelli...decided to reexamine the question of whether quantum mechanics could be combined consistently with general relativity using the standard techniques. We knew that the negative results from the 1970s had an important loophole. Those calculations assumed that the geometry of space is continuous and smooth, no matter how minutely we examine it, just as people had expected matter to be before the discovery of atoms.
Some of our teachers and mentors had pointed out that if this assumption was wrong, the old calculation would not be reliable.
So we began searching for a way to do calculations without assuming that space is smooth and continuous. We insisted on not making any assumptions beyond the experimentally well tested principles of general relativity and quantum theory. In particular we kept two key principles of general relativity at the heart of our calculations.
The first is known as background independence. This principle says that the geometry of spacetime is not fixed. Instead the geometry is an evolving, dynamical quantity. To find the geometry, one has to solve certain equations that include all the effects of matter and energy. Incidentally, string theory, as currently formulated, is not background independent; the equations describing the strings are set up in a predetermined classical (that is, nonquantum) spacetime.
The second principle, known by the imposing name of diffeomorphism invariance, is closely related to background independence. This principle implies that, unlike theories prior to general relativity, one is free to choose any set of coordinates to map spacetime and express the equations. A point in spacetime is defined only by what physically happens at it, not by its location according to some special set of coordinates...
...By carefully combining these two principles with the standard techniques of quantum mechanics, we developed...[the means]...to do a calculation...
That calculation revealed, to our delight, that space is quantized. We had laid the foundations of...loop quantum gravity...
------end of exerpt-----
several people have expressed interest in the SciAm January 2004 article by Lee Smolin, "Atoms of Space and Time"
The complete article is probably worth a visit to your local public library. It is written for general audience but manages to give a fairly clear picture of the field and how it developed. Here is an exerpt, as a sample, from the section where Smolin is describing how he and some others got started:
-------quote page 68----
...In the mid-1980s a few of us...Ashtekar...Jacobson...Rovelli...decided to reexamine the question of whether quantum mechanics could be combined consistently with general relativity using the standard techniques. We knew that the negative results from the 1970s had an important loophole. Those calculations assumed that the geometry of space is continuous and smooth, no matter how minutely we examine it, just as people had expected matter to be before the discovery of atoms.
Some of our teachers and mentors had pointed out that if this assumption was wrong, the old calculation would not be reliable.
So we began searching for a way to do calculations without assuming that space is smooth and continuous. We insisted on not making any assumptions beyond the experimentally well tested principles of general relativity and quantum theory. In particular we kept two key principles of general relativity at the heart of our calculations.
The first is known as background independence. This principle says that the geometry of spacetime is not fixed. Instead the geometry is an evolving, dynamical quantity. To find the geometry, one has to solve certain equations that include all the effects of matter and energy. Incidentally, string theory, as currently formulated, is not background independent; the equations describing the strings are set up in a predetermined classical (that is, nonquantum) spacetime.
The second principle, known by the imposing name of diffeomorphism invariance, is closely related to background independence. This principle implies that, unlike theories prior to general relativity, one is free to choose any set of coordinates to map spacetime and express the equations. A point in spacetime is defined only by what physically happens at it, not by its location according to some special set of coordinates...
...By carefully combining these two principles with the standard techniques of quantum mechanics, we developed...[the means]...to do a calculation...
That calculation revealed, to our delight, that space is quantized. We had laid the foundations of...loop quantum gravity...
------end of exerpt-----
Last edited: