- #1,611
- 24,775
- 792
http://arxiv.org/abs/1110.6017
Dynamics for a simple graph using the U(N) framework for loop quantum gravity
Enrique F. Borja, Jacobo Diaz-Polo, Laurent Freidel, Iñaki Garay, Etera R. Livine
(Submitted on 27 Oct 2011)
The implementation of the dynamics in loop quantum gravity (LQG) is still an open problem. Here, we discuss a tentative dynamics for the simplest class of graphs in LQG: Two vertices linked with an arbitrary number of edges. We find an interesting global U(N) symmetry in this model that selects the homogeneous/isotropic sector. Then, we propose a quantum Hamiltonian operator for this reduced sector. Finally, we introduce the spinor representation for LQG in order to propose a classical effective dynamics for this model.
Comments: 4 pages. Proceedings of Loops'11, Madrid. To appear in Journal of Physics: Conference Series (JPCS)
http://arxiv.org/abs/1110.6114
Effective action for EPRL/FK spin foam models
Aleksandar Mikovic, Marko Vojinovic
(Submitted on 27 Oct 2011)
We show that a natural modification of the EPRL/FK vertex amplitude gives a finite spin foam model whose effective action gives the Einstein-Hilbert action in the limit of large spins and arbitrarily fine spacetime triangulations. The first-order quantum corrections can be easily computed and we show how to calculate the higher-order corrections.
4 pages, proceedings of Loops 11 conference, Madrid; to appear in Journal of Physics: Conference Series (JPCS)
http://arxiv.org/abs/1110.6150
Regularized Hamiltonians and Spinfoams
Emanuele Alesci
(Submitted on 27 Oct 2011)
We review a recent proposal for the regularization of the scalar constraint of General Relativity in the context of LQG. The resulting constraint presents strengths and weaknesses compared to Thiemann's prescription. The main improvement is that it can generate the 1-4 Pachner moves and its matrix elements contain 15j Wigner symbols, it is therefore compatible with the spinfoam formalism: the drawback is that Thiemann anomaly free proof is spoiled because the nodes that the constraint creates have volume.
4 pages, based on a talk given at Loops '11 in Madrid, to appear in Journal of Physics: Conference Series (JPCS)
brief mention, for historical interest:
http://arxiv.org/abs/1110.5941
Introduction to Bronstein's "Quantum theory of weak gravitational fields"
S. Deser, A. Starobinsky
(Submitted on 26 Oct 2011)
A scientific introduction and short biography to accompany the translation of Matvei P. Bronstein, "Quantum theory of weak gravitational fields", Phys. Zeitschr. der Sowjetunion 9, 140 157 (1936), to appear as a "Golden Oldie" in JGRG.
Introduction to translation of Bronstein's original 1935 paper as a "Golden oldie", JGRG, Jan 2012
Last edited: