- #1,891
- 24,775
- 792
http://arxiv.org/abs/1301.6210
Embedding loop quantum cosmology without piecewise linearity
Jonathan Engle
(Submitted on 26 Jan 2013)
An important goal is to understand better the relation between full loop quantum gravity (LQG) and the simplified, reduced theory known as loop quantum cosmology (LQC), directly at the quantum level. Such a firmer understanding would increase confidence in the reduced theory as a tool for formulating predictions of the full theory, as well as permitting lessons from the reduced theory to guide further development in the full theory. The present paper constructs an embedding of the usual state space of LQC into that of standard LQG, that is, LQG based on piecewise analytic paths. The embedding is well-defined even prior to solving the diffeomorphism constraint, at no point is a graph fixed, and at no point is the piecewise linear category used. This motivates for the first time a definition of operators in LQC corresponding to holonomies along non-piecewise-linear paths, without changing the usual kinematics of LQC in any way. The new embedding intertwines all operators corresponding to such holonomies, and all elements in its image satisfy an operator equation which classically implies homogeneity and isotropy. The construction is made possible by a recent result proven by Fleischhack.
18 pages
http://arxiv.org/abs/1301.6173
Scale Anomaly as the Origin of Time
Julian Barbour, Matteo Lostaglio, Flavio Mercati
(Submitted on 25 Jan 2013)
We explore the problem of time in quantum gravity in a point-particle analogue model of scale-invariant gravity. If quantized after reduction to true degrees of freedom, it leads to a time-independent Schrödinger equation. As with the Wheeler--DeWitt equation, time disappears, and a frozen formalism that gives a static wavefunction on the space of possible shapes of the system is obtained. However, if one follows the Dirac procedure and quantizes by imposing constraints, the potential that ensures scale invariance gives rise to a conformal anomaly, and the scale invariance is broken. A behaviour closely analogous to renormalization-group (RG) flow results. The wavefunction acquires a dependence on the scale parameter of the RG flow. We interpret this as time evolution and obtain a novel solution of the problem of time in quantum gravity. We apply the general procedure to the three-body problem, showing how to fix a natural initial value condition, introducing the notion of complexity. We recover a time-dependent Schrödinger equation with a repulsive cosmological force in the `late-time' physics and we analyse the role of the scale invariant Planck constant. We suggest that several mechanisms presented in this model could be exploited in more general contexts.
31 pages, 5 figures
http://arxiv.org/abs/1301.6259
Inconsistencies from a Running Cosmological Constant
Herbert W. Hamber, Reiko Toriumi
(Submitted on 26 Jan 2013)
We examine the general issue of whether a scale dependent cosmological constant can be consistent with general covariance, a problem that arises naturally in the treatment of quantum gravitation where coupling constants generally run as a consequence of renormalization group effects. The issue is approached from several points of view, which include the manifestly covariant functional integral formulation, covariant continuum perturbation theory about two dimensions, the lattice formulation of gravity, and the non-local effective action and effective field equation methods. In all cases we find that the cosmological constant cannot run with scale, unless general covariance is explicitly broken by the regularization procedure. Our results are expected to have some bearing on current quantum gravity calculations, but more generally should apply to phenomenological approaches to the cosmological vacuum energy problem.
34 pages.
http://arxiv.org/abs/1301.6483
Coupling dimers to CDT - conceptual issues
Lisa Glaser
(Submitted on 28 Jan 2013)
Causal dynamical triangulations allows for a non perturbative approach to quantum gravity. In this article a solution for dimers coupled to CDT is presented and some of the conceptual problems that arise are reflected upon.
3 pages. To appear in the Proceedings of the 13th Marcel Grossmann Meeting on General Relativity
brief mention:
http://arxiv.org/abs/1301.6440
The Preon Sector of the SLq(2) (Knot) Model
Robert J. Finkelstein
(Submitted on 28 Jan 2013)
We describe a Lagrangian defining the preon sector of the knot model. The preons are the elements of the fundamental representation of SLq(2). They exactly agree with the preons conjectured by Harari and Shupe. The coupling constants and masses required by this Lagrangian are in principle experimentally measurable...
26 Pages
Last edited: