- #2,066
- 24,775
- 792
http://arxiv.org/abs/1311.1798
Topological lattice field theories from intertwiner dynamics
Bianca Dittrich, Wojciech Kaminski
(Submitted on 7 Nov 2013)
We introduce a class of 2D lattice models that describe the dynamics of intertwiners, or, in a condensed matter interpretation, the fusion and splitting of anyons. We identify different families and instances of triangulation invariant, that is, topological, models inside this class. These models give examples for symmetry protected topologically ordered 1D quantum phases with quantum group symmetries. Furthermore the models provide realizations for anyon condensation into a new effective vacuum. We explain the relevance of our findings for the problem of identifying the continuum limit of spin foam and spin net models.
35+9 pages
possibly of general interest:
http://arxiv.org/abs/1311.1608
On the Reality of Unruh Temperature
Manfred Requardt
(Submitted on 7 Nov 2013)
In contrast to recent criticism we undertake to show that the notion of Unruh temperature describes a real thermal property of the vacuum if viewed from an accelerated reference frame. We embed our investigation in a more general analysis of general relativistic temperature (Tolman-Ehrenfest effect) with the entropy-maximum principle being our guiding principle. We show that the Unruh effect neatly fits into this more general framework. Our criterion of reality is, first, the possibility to transfer a quantum of acceleration radiation to the inertial laboratory where it can be studied in principle under ordinary thrmodynamical conditions. Second, we emphasize as another criterion the importance of the coincidence of the accelerated and inertial observer description as far as the final objective result is concerned.
21 pages
Topological lattice field theories from intertwiner dynamics
Bianca Dittrich, Wojciech Kaminski
(Submitted on 7 Nov 2013)
We introduce a class of 2D lattice models that describe the dynamics of intertwiners, or, in a condensed matter interpretation, the fusion and splitting of anyons. We identify different families and instances of triangulation invariant, that is, topological, models inside this class. These models give examples for symmetry protected topologically ordered 1D quantum phases with quantum group symmetries. Furthermore the models provide realizations for anyon condensation into a new effective vacuum. We explain the relevance of our findings for the problem of identifying the continuum limit of spin foam and spin net models.
35+9 pages
possibly of general interest:
http://arxiv.org/abs/1311.1608
On the Reality of Unruh Temperature
Manfred Requardt
(Submitted on 7 Nov 2013)
In contrast to recent criticism we undertake to show that the notion of Unruh temperature describes a real thermal property of the vacuum if viewed from an accelerated reference frame. We embed our investigation in a more general analysis of general relativistic temperature (Tolman-Ehrenfest effect) with the entropy-maximum principle being our guiding principle. We show that the Unruh effect neatly fits into this more general framework. Our criterion of reality is, first, the possibility to transfer a quantum of acceleration radiation to the inertial laboratory where it can be studied in principle under ordinary thrmodynamical conditions. Second, we emphasize as another criterion the importance of the coincidence of the accelerated and inertial observer description as far as the final objective result is concerned.
21 pages