- #2,276
- 24,775
- 792
http://arxiv.org/abs/1412.0775
Creation of particles in a cyclic universe driven by loop quantum cosmology
Yaser Tavakoli, Julio C. Fabris
(Submitted on 2 Dec 2014)
We consider an isotropic and homogeneous universe in loop quantum cosmology. We assume that the matter content of the universe is dominated by dust matter in early time and a phantom matter at late time which constitutes the dark energy component. The quantum gravity modifications to the Friedmann equation in this model indicate that the classical big bang singularity and the future big rip singularity are resolved and are replaced by quantum bounce. It turns out that the big bounce and recollapse in the herein model contribute a cyclic scenario for the universe. We then investigate the effects of quantum fields propagating on this cosmological background. By solving the Klein-Gordon equation for a massive and non-minimally coupled scalar field in the primordial region, we study the quantum theory of fields undergoing cosmological evolution towards the late time bounce. By using the exact solutions to describe the quantum fields at early and late time phases we obtain the density of created particles at late time. We find that the density of created particles is negligible comparing with the quantum background density at Planck era, hence, the effects of the quantum particle production do not lead to modification of the future bounce.
8 pages, 2 figures
brief mention, not Loop-and-allied QG but possibly of broader interest:
http://arxiv.org/abs/1412.1723
Communication complexity and the reality of the wave-function
Alberto Montina
(Submitted on 4 Dec 2014)
In this review, we discuss a relation between quantum communication complexity and a long-standing debate in quantum foundation concerning the interpretation of the quantum state. Is the quantum state a physical element of reality as originally interpreted by Schrodinger? Or is it an abstract mathematical object containing statistical information about the outcome of measurements as interpreted by Born? Although these questions sound philosophical and pointless, they can be made precise in the framework of what we call classical theories of quantum processes, which are a reword of quantum phenomena in the language of classical probability theory. In 2012, Pusey, Barrett and Rudolph (PBR) proved, under an assumption of preparation independence, a theorem supporting the original interpretation of Schrodinger in the classical framework. Recently, we showed that these questions are related to a practical problem in quantum communication complexity, namely, quantifying the minimal amount of classical communication required in the classical simulation of a two-party quantum communication process. In particular, we argued that the statement of the PBR theorem can be proved if the classical communication cost of simulating the communication of n qubits grows more than exponentially in 'n'. Our argument is based on an assumption that we call probability equipartition property. This property is somehow weaker than the preparation independence property used in the PBR theorem, as the former can be justified by the latter and the asymptotic equipartition property of independent stochastic sources. The equipartition property is a general and natural hypothesis that can be assumed even if the preparation independence hypothesis is dropped. In this review, we further develop our argument into the form of a theorem.
9 pages.
===new additions===
general interest:
http://arxiv.org/abs/1412.1895
Entanglement entropy of electromagnetic edge modes
William Donnelly, Aron C. Wall
(Submitted on 5 Dec 2014)
The vacuum entanglement entropy of Maxwell theory, when evaluated by standard methods, contains an unexpected term with no known statistical interpretation. We resolve this two-decades old puzzle by showing that this term is the entanglement entropy of edge modes: classical solutions determined by the electric field normal to the entangling surface. We explain how the heat kernel regularization applied to this term leads to the negative divergent expression found by Kabat. This calculation also resolves a recent puzzle concerning the logarithmic divergences of gauge fields in 3+1 dimensions.
7 pages.
http://arxiv.org/abs/1412.2040
How fundamental are fundamental constants?
M. J. Duff
(Submitted on 5 Dec 2014)
I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, alpha. For example, the Standard Model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers, scales... they use to measure them. Dimensional constants, on the other hand, such as h, c, G, e, k..., are merely human constructs whose number and values differ from one choice of units to the next. In this sense only dimensionless constants are "fundamental". Similarly, the possible time variation of dimensionless fundamental "constants" of nature is operationally well-defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as c or G on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might disagree depending on their apparatus. All these confusions disappear if one asks only unit-independent questions.
We provide a selection of opposing opinions in the literature and respond accordingly.
30 pages, 7 figures.
brief mention:
http://arxiv.org/abs/1412.2054
Planck-scale phenomenology with anti-de Sitter momentum space
Michele Arzano, Giulia Gubitosi, Joao Magueijo, Giovanni Amelino-Camelia
(Submitted on 5 Dec 2014)
We investigate the anti-de Sitter (AdS) counterpart to the well studied de Sitter (dS) model for energy-momentum space, viz "κ-momentum space" space (with a structure based on the properties of the κ-Poincaré Hopf algebra). On the basis of previous preliminary results one might expect the two models to be "dual": dS exhibiting an invariant maximal spatial momentum but unbounded energy, AdS a maximal energy but unbounded momentum. If that were the case AdS momentum space could be used to implement a principle of maximal Planck-scale energy, just as several studies use dS momentum space to postulate of maximal Planck-scale spatial momentum. However several unexpected features are uncovered in this paper, which limit the scope of the expected duality, and interestingly they take different forms in different coordinatizations of AdS momentum space...
...
11 pages, 5 figures.
http://arxiv.org/abs/1409.2335
Inflation without Selfreproduction
Viatcheslav Mukhanov
(Submitted on 8 Sep 2014)
We find a rather unique extension of inflationary scenario which avoids selfreproduction and thus resolves the problems of multiverse, predictability and initial conditions. In this theory the amplitude of the cosmological perturbations is expressed entirely in terms of the total duration of inflation.
11 pages.
http://arxiv.org/abs/1412.2518
Inflation without self-reproduction in F(R) gravity
Shin'ichi Nojiri, Sergei D. Odintsov
(Submitted on 8 Dec 2014)
We investigate inflation in frames of two classes of F(R) gravity and check its consistency with Planck data. It is shown that F(R) inflation without self-reproduction may be constructed in close analogy with the corresponding scalar example proposed by Mukhanov for the resolution the problems of multiverse, predictability and initial conditions.
6 pages.
Creation of particles in a cyclic universe driven by loop quantum cosmology
Yaser Tavakoli, Julio C. Fabris
(Submitted on 2 Dec 2014)
We consider an isotropic and homogeneous universe in loop quantum cosmology. We assume that the matter content of the universe is dominated by dust matter in early time and a phantom matter at late time which constitutes the dark energy component. The quantum gravity modifications to the Friedmann equation in this model indicate that the classical big bang singularity and the future big rip singularity are resolved and are replaced by quantum bounce. It turns out that the big bounce and recollapse in the herein model contribute a cyclic scenario for the universe. We then investigate the effects of quantum fields propagating on this cosmological background. By solving the Klein-Gordon equation for a massive and non-minimally coupled scalar field in the primordial region, we study the quantum theory of fields undergoing cosmological evolution towards the late time bounce. By using the exact solutions to describe the quantum fields at early and late time phases we obtain the density of created particles at late time. We find that the density of created particles is negligible comparing with the quantum background density at Planck era, hence, the effects of the quantum particle production do not lead to modification of the future bounce.
8 pages, 2 figures
brief mention, not Loop-and-allied QG but possibly of broader interest:
http://arxiv.org/abs/1412.1723
Communication complexity and the reality of the wave-function
Alberto Montina
(Submitted on 4 Dec 2014)
In this review, we discuss a relation between quantum communication complexity and a long-standing debate in quantum foundation concerning the interpretation of the quantum state. Is the quantum state a physical element of reality as originally interpreted by Schrodinger? Or is it an abstract mathematical object containing statistical information about the outcome of measurements as interpreted by Born? Although these questions sound philosophical and pointless, they can be made precise in the framework of what we call classical theories of quantum processes, which are a reword of quantum phenomena in the language of classical probability theory. In 2012, Pusey, Barrett and Rudolph (PBR) proved, under an assumption of preparation independence, a theorem supporting the original interpretation of Schrodinger in the classical framework. Recently, we showed that these questions are related to a practical problem in quantum communication complexity, namely, quantifying the minimal amount of classical communication required in the classical simulation of a two-party quantum communication process. In particular, we argued that the statement of the PBR theorem can be proved if the classical communication cost of simulating the communication of n qubits grows more than exponentially in 'n'. Our argument is based on an assumption that we call probability equipartition property. This property is somehow weaker than the preparation independence property used in the PBR theorem, as the former can be justified by the latter and the asymptotic equipartition property of independent stochastic sources. The equipartition property is a general and natural hypothesis that can be assumed even if the preparation independence hypothesis is dropped. In this review, we further develop our argument into the form of a theorem.
9 pages.
===new additions===
general interest:
http://arxiv.org/abs/1412.1895
Entanglement entropy of electromagnetic edge modes
William Donnelly, Aron C. Wall
(Submitted on 5 Dec 2014)
The vacuum entanglement entropy of Maxwell theory, when evaluated by standard methods, contains an unexpected term with no known statistical interpretation. We resolve this two-decades old puzzle by showing that this term is the entanglement entropy of edge modes: classical solutions determined by the electric field normal to the entangling surface. We explain how the heat kernel regularization applied to this term leads to the negative divergent expression found by Kabat. This calculation also resolves a recent puzzle concerning the logarithmic divergences of gauge fields in 3+1 dimensions.
7 pages.
http://arxiv.org/abs/1412.2040
How fundamental are fundamental constants?
M. J. Duff
(Submitted on 5 Dec 2014)
I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, alpha. For example, the Standard Model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers, scales... they use to measure them. Dimensional constants, on the other hand, such as h, c, G, e, k..., are merely human constructs whose number and values differ from one choice of units to the next. In this sense only dimensionless constants are "fundamental". Similarly, the possible time variation of dimensionless fundamental "constants" of nature is operationally well-defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as c or G on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might disagree depending on their apparatus. All these confusions disappear if one asks only unit-independent questions.
We provide a selection of opposing opinions in the literature and respond accordingly.
30 pages, 7 figures.
brief mention:
http://arxiv.org/abs/1412.2054
Planck-scale phenomenology with anti-de Sitter momentum space
Michele Arzano, Giulia Gubitosi, Joao Magueijo, Giovanni Amelino-Camelia
(Submitted on 5 Dec 2014)
We investigate the anti-de Sitter (AdS) counterpart to the well studied de Sitter (dS) model for energy-momentum space, viz "κ-momentum space" space (with a structure based on the properties of the κ-Poincaré Hopf algebra). On the basis of previous preliminary results one might expect the two models to be "dual": dS exhibiting an invariant maximal spatial momentum but unbounded energy, AdS a maximal energy but unbounded momentum. If that were the case AdS momentum space could be used to implement a principle of maximal Planck-scale energy, just as several studies use dS momentum space to postulate of maximal Planck-scale spatial momentum. However several unexpected features are uncovered in this paper, which limit the scope of the expected duality, and interestingly they take different forms in different coordinatizations of AdS momentum space...
...
11 pages, 5 figures.
http://arxiv.org/abs/1409.2335
Inflation without Selfreproduction
Viatcheslav Mukhanov
(Submitted on 8 Sep 2014)
We find a rather unique extension of inflationary scenario which avoids selfreproduction and thus resolves the problems of multiverse, predictability and initial conditions. In this theory the amplitude of the cosmological perturbations is expressed entirely in terms of the total duration of inflation.
11 pages.
http://arxiv.org/abs/1412.2518
Inflation without self-reproduction in F(R) gravity
Shin'ichi Nojiri, Sergei D. Odintsov
(Submitted on 8 Dec 2014)
We investigate inflation in frames of two classes of F(R) gravity and check its consistency with Planck data. It is shown that F(R) inflation without self-reproduction may be constructed in close analogy with the corresponding scalar example proposed by Mukhanov for the resolution the problems of multiverse, predictability and initial conditions.
6 pages.
Last edited: