- #71
archaic
- 688
- 214
I am not exactly sure, but maybe I can use a recursive algorithm. I'll think about it later.archaic said:Not yet a full solution; missing a detail. I'd be grateful if someone could give me a hint for 3) of the first part.
We know that ##p_n(0)=1## for all ##n##, ##p_0(x)=1## has no zeroes, and ##p_1(x)## has only one zero (linear function). For the rest, I suppose that ##n\geq2##.
Let ##n## be an even natural number.
1) ##\forall x\geq0,\,p_n(x)>0## since we have a sum of positive numbers.
2) ##\forall x\in[-1,\,0),\,p_n(x)>0##.
I can write ##p_n(x)## like this:
$$p_n(x)=1+\sum_\underset{\text{step}=2}{k=1}^{n-1}\left(\frac{x^k}{k!}+\frac{x^{k+1}}{(k+1)!}\right)$$
I am going to prove that the parenthesis is always positive:
$$\begin{align*}
x^k\geq |x|^{k+1}&\Leftrightarrow\frac{x^k}{k!}>\frac{x^k}{(k+1)!}\geq\frac{|x|^{k+1}}{(k+1)!} \\
&\Leftrightarrow\frac{x^k}{k!}>\frac{|x|^{k+1}}{(k+1)!}\\
&\Leftrightarrow\frac{x^k}{k!}>\frac{x^{k+1}}{(k+1)!}>-\frac{x^k}{k!}\\
&\Leftrightarrow-\frac{x^k}{k!}<-\frac{x^{k+1}}{(k+1)!}<\frac{x^k}{k!}\\
&\Leftrightarrow0<\frac{x^k}{k!}+\frac{x^{k+1}}{(k+1)!}
\end{align*}$$
3) ##\forall x<-1,\,p_n(x)>0##. (WIP)
Since ##p_n(x)>0## for all real values of ##x##, it has no real zeroes when ##n## is even.
Let ##n## be an odd natural number.
I notice that ##p'_n(x)=p_{n-1}(x)##. We have that ##n-1## is even, so ##p_{n-1}>0## for ##x\in\mathbb{R}##. From this I can say that ##p_n(x)## is a bijection, since it is constantly growing, with no absolute/local maximum or minimum. ##(*)##
We also have that:
$$\lim_{x\to\pm\infty}p_n(x)=\lim_{x\to\pm\infty}\frac{x^n}{n!}=\pm\infty$$
1) This tells me that there exists a real number ##N##, such that ##p_n(N)p_n(-N)<0##.
2) Since ##p_n(x)## is a polynomial, it is continuous over all ##\mathbb{R}##.
Using 1) and 2), I conclude from the intermediate value theorem that there exists a real number ##c## such that ##p_n(c)=0##. Moreover, using ##(*)##, I also conclude that ##c## is unique.
Conclusion:
If ##n## is even, then ##p_n(x)## has no real zeroes. Else, it has only one.