- #36
etotheipi
probably wrong for #8 but I'll try anyway; by gram schmidt we can come up with an orthogonal basis ##(v_1, v_2)## for ##K## by setting ##v_1 = 1## and ##v_2 = x - \langle x, 1 \rangle = x - 1/2##. then it's just
$$\pi^{\bot}(v) = \frac{\langle v, x - \frac{1}{2} \rangle}{|x - \frac{1}{2}|^2} (x - \frac{1}{2}) + \langle v , 1 \rangle$$then$$\begin{align*}
\int_0^1 (x-\frac{1}{2}) e^x dx &= \frac{3-e}{2} \\
\int_0^1 (x-\frac{1}{2})^2 dx &= \frac{1}{12} \\
\int_0^1 e^x dx = e-1
\end{align*}$$so you just get$$\pi^{\bot}(e^x) = 6(3-e)(x-\frac{1}{2}) + (e-1)$$lol idk if that's right, but it's 3am so cba to check atm
$$\pi^{\bot}(v) = \frac{\langle v, x - \frac{1}{2} \rangle}{|x - \frac{1}{2}|^2} (x - \frac{1}{2}) + \langle v , 1 \rangle$$then$$\begin{align*}
\int_0^1 (x-\frac{1}{2}) e^x dx &= \frac{3-e}{2} \\
\int_0^1 (x-\frac{1}{2})^2 dx &= \frac{1}{12} \\
\int_0^1 e^x dx = e-1
\end{align*}$$so you just get$$\pi^{\bot}(e^x) = 6(3-e)(x-\frac{1}{2}) + (e-1)$$lol idk if that's right, but it's 3am so cba to check atm