- #106
Erland
Science Advisor
- 769
- 148
Let me also give the nonstandard analysis proof I mentioned. To follow it, the reader needs some knowledge about nonstandard analysis, for which I refer to the literature.
We work in a nonstandard extension of some superstructure over ##\mathbb R##. Every number, set, function etc. ##x## in this superstructure has a ##*##-transform ##^*x## in the extended superstructure.
Let ##\{x_n\}_{n\in \mathbb Z_+}## be a bounded sequence in ##\mathbb R##. Its ##*##-transform ##^*\{x_n\}_{n\in \mathbb Z_+}##is a bounded hypersequence ##\{x_n\}_{n\in \,^*\mathbb Z_+}## in ##^*\mathbb R##.
Pick an infinite positive hyperinteger ##H\in\, ^*\mathbb Z_+\setminus\mathbb Z_+##.
For each bounded real sequence ##\{x_n\}_{n\in \mathbb Z_+}##, put ##F(\{x_n\}_{n\in \mathbb Z_+})=st(x_H)##, i.e. the standard part of ##x_H## (in the corresponding hypersequence). It is easy to verify that ##F## is a real linear functional on the space ##\mathcal B## of all bounded real sequences.
It is also so that ##\overline\lim x_n=\max_{K\in\, ^*\mathbb Z_+-\mathbb Z_+}st(x_K)## and ##\underline\lim x_n=\min_{K\in \,^*\mathbb Z_+-\mathbb Z_+}st(x_K)##, so ##\underline\lim x_n\le F(\{x_n\}_{n\in \mathbb Z_+})\le \overline\lim x_n##.
Now, define ##G: \mathcal B\to\mathcal B## by ##G(\{x_n\}_{n\in \mathbb Z_+}=\{y_n\}_{n\in \mathbb Z_+}##, where ##y_n=\frac1n\sum_{k=1}^n x_n## for all ##n\in \mathbb Z_+##. Let ##H_1=\,^*\lfloor \,^*\sqrt{H}\rfloor##. Then ##H_1## is an infinite positive hyperinteger such that ##H_1/H## is infinitesimal.
There is a real ##M## such that ##|x_n|\le M## for all ##n\in \mathbb Z_+##, and the same holds for all ##n\in ^*\mathbb Z_+##, with the same ##M##. It follows that ##\frac1H\,^*\sum_{k=1}^{H_1}x_k## is infinitesimal and that ##y_H=\frac1H\,^*\sum_{k=1}^{H}x_k## is finite, and ##F(\{x_n\}_{n\in \mathbb Z_+})=st(y_H)=st(\frac1H\,^*\sum_{k=H_1+1}^{H}x_k)##. By the characterizations of ##\overline\lim x_n## and ##\underline\lim x_n## above, this implies that ##\underline\lim x_n\le F(\{y_n\}_{n\in \mathbb Z_+})\le \overline \lim x_n ##.
With these ##\{x_n\}_{n\in \mathbb Z_+}## and ##\{y_n\}_{n\in \mathbb Z_+}##, define ##\{u_n\}_{n\in \mathbb Z_+}## by ##u_n=x_{n+1}##, for all ##n\in \mathbb Z_+##, and put ##\{z_n\}_{n\in \mathbb Z_+}=G(\{u_n\}_{n\in \mathbb Z_+})##. Then ##F(\{z_n\}_{n\in \mathbb Z_+})-F(\{y_n\}_{n\in \mathbb Z_+})=st((x_{H+1}-x_1)/H)=0##.
So, if we put ##L=G\circ F:\mathcal B\to\mathbb R##, then ##L## is linear, ##\underline\lim x_n\le L(\{x_n\}_{n\in \mathbb Z_+})\le \overline \lim x_n ##,
since ##G(\{x_n\}_{n\in \mathbb Z_+})=\{y_n\}_{n\in \mathbb Z_+}##, and ##L(\{u_n\}_{n\in \mathbb Z_+})=L(\{x_n\}_{n\in \mathbb Z_+})##, since ##F(\{z_n\}_{n\in \mathbb Z_+})=F(\{y_n\}_{n\in \mathbb Z_+})##.
This means that ##L## satisfies 1, 2, 3, and 5, and hence 4 and 6, in the definition of generalized limit, so ##L## is a generalized limit.
If one tries to convert this proof to a "standard" proof, the result is something like my previous proof. So we see that nonstandard proofs are often considerably shorter!
We work in a nonstandard extension of some superstructure over ##\mathbb R##. Every number, set, function etc. ##x## in this superstructure has a ##*##-transform ##^*x## in the extended superstructure.
Let ##\{x_n\}_{n\in \mathbb Z_+}## be a bounded sequence in ##\mathbb R##. Its ##*##-transform ##^*\{x_n\}_{n\in \mathbb Z_+}##is a bounded hypersequence ##\{x_n\}_{n\in \,^*\mathbb Z_+}## in ##^*\mathbb R##.
Pick an infinite positive hyperinteger ##H\in\, ^*\mathbb Z_+\setminus\mathbb Z_+##.
For each bounded real sequence ##\{x_n\}_{n\in \mathbb Z_+}##, put ##F(\{x_n\}_{n\in \mathbb Z_+})=st(x_H)##, i.e. the standard part of ##x_H## (in the corresponding hypersequence). It is easy to verify that ##F## is a real linear functional on the space ##\mathcal B## of all bounded real sequences.
It is also so that ##\overline\lim x_n=\max_{K\in\, ^*\mathbb Z_+-\mathbb Z_+}st(x_K)## and ##\underline\lim x_n=\min_{K\in \,^*\mathbb Z_+-\mathbb Z_+}st(x_K)##, so ##\underline\lim x_n\le F(\{x_n\}_{n\in \mathbb Z_+})\le \overline\lim x_n##.
Now, define ##G: \mathcal B\to\mathcal B## by ##G(\{x_n\}_{n\in \mathbb Z_+}=\{y_n\}_{n\in \mathbb Z_+}##, where ##y_n=\frac1n\sum_{k=1}^n x_n## for all ##n\in \mathbb Z_+##. Let ##H_1=\,^*\lfloor \,^*\sqrt{H}\rfloor##. Then ##H_1## is an infinite positive hyperinteger such that ##H_1/H## is infinitesimal.
There is a real ##M## such that ##|x_n|\le M## for all ##n\in \mathbb Z_+##, and the same holds for all ##n\in ^*\mathbb Z_+##, with the same ##M##. It follows that ##\frac1H\,^*\sum_{k=1}^{H_1}x_k## is infinitesimal and that ##y_H=\frac1H\,^*\sum_{k=1}^{H}x_k## is finite, and ##F(\{x_n\}_{n\in \mathbb Z_+})=st(y_H)=st(\frac1H\,^*\sum_{k=H_1+1}^{H}x_k)##. By the characterizations of ##\overline\lim x_n## and ##\underline\lim x_n## above, this implies that ##\underline\lim x_n\le F(\{y_n\}_{n\in \mathbb Z_+})\le \overline \lim x_n ##.
With these ##\{x_n\}_{n\in \mathbb Z_+}## and ##\{y_n\}_{n\in \mathbb Z_+}##, define ##\{u_n\}_{n\in \mathbb Z_+}## by ##u_n=x_{n+1}##, for all ##n\in \mathbb Z_+##, and put ##\{z_n\}_{n\in \mathbb Z_+}=G(\{u_n\}_{n\in \mathbb Z_+})##. Then ##F(\{z_n\}_{n\in \mathbb Z_+})-F(\{y_n\}_{n\in \mathbb Z_+})=st((x_{H+1}-x_1)/H)=0##.
So, if we put ##L=G\circ F:\mathcal B\to\mathbb R##, then ##L## is linear, ##\underline\lim x_n\le L(\{x_n\}_{n\in \mathbb Z_+})\le \overline \lim x_n ##,
since ##G(\{x_n\}_{n\in \mathbb Z_+})=\{y_n\}_{n\in \mathbb Z_+}##, and ##L(\{u_n\}_{n\in \mathbb Z_+})=L(\{x_n\}_{n\in \mathbb Z_+})##, since ##F(\{z_n\}_{n\in \mathbb Z_+})=F(\{y_n\}_{n\in \mathbb Z_+})##.
This means that ##L## satisfies 1, 2, 3, and 5, and hence 4 and 6, in the definition of generalized limit, so ##L## is a generalized limit.
If one tries to convert this proof to a "standard" proof, the result is something like my previous proof. So we see that nonstandard proofs are often considerably shorter!
Last edited: