Number of moles necessary to get piston back to initial position

AI Thread Summary
The discussion focuses on calculating the number of moles required to return a piston to its initial position in a thermodynamic system. Key equations are presented, including the relationships between pressure, volume, and temperature for both states A and B. The work done by the gas on the spring is calculated, leading to a heat transfer value of approximately -3750 J. The final temperature at state B is derived to be one-fourth of state A, resulting in a calculated need for 4 moles of gas to achieve the desired state. The change in moles is determined to be 3 moles, indicating the amount of gas needed for the piston to return to its original position.
lorenz0
Messages
151
Reaction score
28
Homework Statement
In a cylindrical piston of section S a piston can move without friction. A mole of ideal monoatomic gas is confined to the left, the right chamber is empty and contains a spring with elastic constant k which would be at rest if the piston were all the way to the left.
Initially the gas is at rest in an "A" state (##p_A = 10^5 Pa,
V_A = 25 dm^3##). It takes place through an exchange of heat with the outside
a slow transformation until reaching a "B" state with volume
halved. Calculate :
a) the heat ##Q## exchanged by the gas with the external environment to complete the transformation,
b) the entropy change ##\Delta S_G## of the gas,
c) how many moles ##n_{agg}## of gas must be added to bring the piston back to the initial position assuming that the temperature remains that of state "B"?
Relevant Equations
##F_{spring}=-kx, \Delta U=Q-L, W=\int_{a}^{b} \vec{F}\cdot\vec{dx}, \Delta S=nC_V\ln(\frac{T_f}{T_i})+nR\ln(\frac{V_f}{V_i}), PV=nRT##
a) ##T_A=\frac{p_AV_A}{nR}=300.7K, P_A V_A=kL^2=nRT_A##, ##P_B S=k\frac{L}{2}\Rightarrow P_B V_B=k(\frac{L}{2})^2 \Rightarrow P_B=\frac{kL^2}{2V_A}=\frac{P_AV_A}{2V_A}=\frac{P_A}{2}##, ##W_{spring\to gas}=\int_{L}^{L/2}kxdx=-\frac{3}{8}kL^2=-\frac{3}{8}nRT_A####\Rightarrow Q=L+\Delta U=-\frac{3}{8}nRT_A+n\cdot\frac{3}{2}R (\frac{T_A}{4}-T_A)\simeq 3750 J##

b) ##\Delta S_{gas}=nC_V\ln(\frac{T_f}{T_i})+nR\ln(\frac{V_f}{V_i})=nC_V\ln(\frac{T_A /4}{T_A})+nR\ln(\frac{V_A/2}{V_A})=-4nR\ln(2)=-23 J/K##

EDIT: I think I have managed to solve also part c)

c) ##T_B=\frac{P_BV_B}{nR}=\frac{1}{nR}\cdot\frac{kL^2}{2V_A}\cdot\frac{V_A}{2}=\frac{1}{4}\frac{kL^2}{nR}=\frac{1}{4}\cdot\frac{P_AV_A}{nR}=\frac{1}{4}T_A## so ##n_f=\frac{P_AV_A}{RT_B}=\frac{10^5\cdot 25\cdot 10^{-3}}{8.314\cdot\frac{300.7}{4}}mol=4mol## so ##\Delta n=n_f-n_i=(4-1)mol=3mol##
 

Attachments

  • piston.png
    piston.png
    7.7 KB · Views: 132
Last edited by a moderator:
Physics news on Phys.org
In part (a), your W is the work done by the gas on the springbecause ##Q=W+\Delta U##. So, for Q, I get $$Q=-1.5RT_A=-3750\ J$$

The rest looks good. Very nice job.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top