- #1
Guillem_dlc
- 188
- 17
- Homework Statement
- We have a uniformly charged ring of radius ##R## with a linear charge density ##\lambda##. Determine the potential at a point on its axis at a distance ##z## from the plane of the ring.
Answer: ##V=\dfrac{\lambda}{2\varepsilon_0}\dfrac{R}{\sqrt{z^2+R^2}}##
- Relevant Equations
- ##V_z=\int E\cdot dl##
We know that
$$V_Z=\int_{\textrm{ring}} E\cdot dl$$
We therefore consider ##E=\dfrac{\lambda}{2\pi \varepsilon_0}\cdot \dfrac1r##. Then,
$$V_Z=\int_{\textrm{ring}} \dfrac{\lambda}{2\pi \varepsilon_0}\cdot \dfrac1r\, dl = \dfrac{\lambda}{2\pi \varepsilon_0}\dfrac1r \int_{\textrm{ring}}dl=$$
$$=\dfrac{\lambda}{\cancel{2\pi} \varepsilon_0}\dfrac1r \cancel{2\pi} R=\dfrac{\lambda}{\varepsilon_0}\cdot \dfrac{R}{r}=\dfrac{\lambda}{\varepsilon_0}\dfrac{R}{\sqrt{z^2+R^2}},$$
where ##r=\sqrt{z^2+R^2}##.
I have done this.
$$V_Z=\int_{\textrm{ring}} E\cdot dl$$
We therefore consider ##E=\dfrac{\lambda}{2\pi \varepsilon_0}\cdot \dfrac1r##. Then,
$$V_Z=\int_{\textrm{ring}} \dfrac{\lambda}{2\pi \varepsilon_0}\cdot \dfrac1r\, dl = \dfrac{\lambda}{2\pi \varepsilon_0}\dfrac1r \int_{\textrm{ring}}dl=$$
$$=\dfrac{\lambda}{\cancel{2\pi} \varepsilon_0}\dfrac1r \cancel{2\pi} R=\dfrac{\lambda}{\varepsilon_0}\cdot \dfrac{R}{r}=\dfrac{\lambda}{\varepsilon_0}\dfrac{R}{\sqrt{z^2+R^2}},$$
where ##r=\sqrt{z^2+R^2}##.
I have done this.