- #71
- 3,456
- 1,251
DarioC said:Fog37, In reply I think you might want to look at what happens at the leading edge of the wing. I am getting close to the limits of my understanding here.
The air running into the leading edge curve is flung/forced upwards which compacts the air above the wing, at the same time making a lower pressure near the surface of the wing. The pressure layers higher up cannot exert downward force because they are being constantly compacted and separated from the wing by the up flow from the curved leading edge.
Pretty cool question you asked, as it made me reorganize what I "knew" about airfoils and think about the details more.
Air running into the leading edge is directed both over and under the wing, not simply over it. You are correct that the pressure away from the surface does not impact it directly (only the surface pressure acts on the surface), but it is related.
Consider the streamlines as they move around the airfoil over the top. Near the leading edge they are deflected upward and have a curvature whose center points away from the airfoil. Curved motion requires a centripetal force, which here must be provided by a pressure gradient. Since the pressure far from the airfoil must be atmospheric, this means that the pressure in that region must be locally higher than atmosphere. This shouldn't be surprising because this is the result of being near the stagnation point.
After that point, the curvature flips direction as the streamlines bent to follow the curve of the airfoil over the top. Now the center of curvative is in or below the wing and the pressure must therefore decrease as you approach the surface. There is therefore a low pressure near the surface at that point.
So the pressure far from the surface does not directly impact the lift force, but it definitely plays an indirect role here.
DarioC said:Added: Are you familiar with the triangular strips of metal that are put on the leading edge of the wings, near the fuselage to make that part of the wing stall before the outboard part where the ailerons are?
Rather interesting little detail on real-world wings.
That's not what those triangles do. Those are vortex generators and they actually delay stall. The turbulence they induce energizes the boundary layer near the wall and makes it more resistant to separation.
FactChecker said:I think this is an excellent video. As an interested amateur, I wish that I had seen this decades ago. It really gives one a clue that any simple explanation necessarily omits a too much and is misleading when predicting lift and drag. That is why CFD programs are used in spite of the huge amount of computer power required and the limitations of the answers.
Well, CFD is quite effective for lift. It isn't terribly accurate for drag. Computers do a terrible job of predicting laminar-turbulent transition, for example, and as a result do a terrible job predicting separation.