- #71
Stephen Tashi
Science Advisor
- 7,861
- 1,600
sysprog said:Labeling the box containing value X, Box 1, as you did for part of the analyses you presented: "Pr(Box 1 is selected) = 1/3", though clearly correct, doesn't require subdivision into the q[1] and [q2] individual probabilities for the revealed coin; doing that neither adds nor detracts from the fact that before and after a coin is revealed, the probability that whichever kind of coin it is, it came from Box 1, is 1/3.
When discussing a problem (given in words) where each outcome may have certain properties, I think the sample space should be detailed enough to exhibit whether each outcome does or does not have each property. If this is not done then the issues of mathematics and the issues of literary interpretation get jumbled together. People make verbal assertions about phenomena. These assertions refer to properties of outcomes. Unless the sample space is detailed enough to represent whether each property does or does-not apply to each outcome, there is no way to translate the verbal assertions into mathematical relations.
I agree with the conclusion that Pr(Box 1 is selected given the revealed coin is gold) = Pr(Box 1 is selected), however I don't understand what principle you would use to justify that. The general idea that Pr(A) = Pr(A|B) is clearly wrong, so one would need an argument, mathematical or literary, to justify why that pattern applies to selection of Box 1 in the Bertram Box problem.
One can make a literary argument that sounds like physics - e.g. "Once the box is selected, nothing that is done to examine it can change which box it is". I like that argument! However, as a generality, it often fails to account for the numerical behavior of probabilities.
There being only a 1/3 chance that the X value box was selected, the second coin has only a 1/3 chance of being different, and therefore must have a 2/3 chance of being the same.
In that fragment of your argument, you are reasoning about outcomes that involve properties of the "second" coin. So it seems to me that if you were to explicitly describe the sample space to which your argument applies, you'd need a description of outcomes that was detailed enough to describe the properties that may or may-not apply to the first and second coin in each outcome. That sample space might not be like my sample space, but it would be more detailed than simply having 3 outcomes, each defined only by which box is selected.
As I see it, you are formulating an argument that explains why a simple 3-element sample space can answer the question by implicitly discussing another sample space that has more detail.